COMPARATIVE ANALYSES AND FINDINGS

In this chapter we summarize the conclusions reached from the tracer study and the air quality modeling simulations. As previously discussed, the tracer study provided data that would allow for a qualitative comparison of the onshore impacts (dispersion only) between the proposed and existing shipping lanes. In addition to the analysis of the tracer study data, modeling simulations were conducted to numerically compare the onshore impacts from each of the proposed control strategies - relocation of the shipping lane and voluntary speed reduction. As per the TWG, the modeling simulations did not consider photochemistry, due to the non-availability of a complete emissions inventory for the SCOS episodes and time considerations. We also include a brief summary of the findings and our recommendations to U.S. EPA to consider in their deliberations on a suitable control strategy to provide the emission reductions needed from marine vessels in the 1994 Ozone SIP. Our conclusions and findings are limited to an analysis of the impacts on the SCAQMD. As discussed previously, the TWG agreed to limit the analysis to the SCAQMD with the understanding that U.S. EPA may need to take into consideration the impacts on upwind and downwind regions when determining the most appropriate operational control for marine vessels.

A. TRACER STUDY ANALYSIS

The tracer study provided data on the trajectory and dispersion of ship emissions released from ships traversing the existing shipping lane and the proposed relocated shipping lane. The data collected allows for comparison between the differences in dispersion for the morning and afternoon periods on 3 days – August 23, 1997, September 4, 1997 and October 4, 1997. By looking at the dispersion characteristics qualitative information can be gleaned regarding the potential for onshore air quality impacts due to NO_x emissions from ships traveling in the shipping lanes along the coast. Greater dispersion implies the emissions are dispersed over a larger area or volume, resulting in lower concentrations of the pollutant available to participate in the photochemical reactions that form ozone and particulate matter. If dispersion is greater when ships are traveling along a particular shipping lane, presumably the emissions from those ships would have less potential impact on air quality than ships traveling along a lane that demonstrates less dispersion.

To assess the dispersion of emissions from the existing and proposed shipping lanes, the average normalized station peaks of the tracer measurements were determined and the ratios of impacts were calculated. These ratios, which were first presented in Table

IV-13 are shown again in Table VI-1 below. Ratios less than 1.0 imply greater dispersion from the proposed lane and those greater than 1.0 imply less dispersion from the proposed lane. Ratios near 1.0 imply similar dispersion for the two lanes.

Table VI-1
Ratios* of Proposed Shipping Lane Impact to Current Shipping Lane Impact in the South Coast AQMD

	Ratio for Morning Release	Ratio for Afternoon Release
August 23, 1997	0	1.79
September 4, 1997	0.40	0.21
October 4, 1997	N/A	0.99

The ratio of average normalized station peak concentrations for the proposed lane to that from the current lane, from Table IV-12

The data do not demonstrate a consistent pattern. While the ratios for the morning releases demonstrate greater dispersion from the proposed shipping lane on the tracer release days, the afternoon releases did not show any consistency. For the afternoon releases, there was less dispersion from the proposed lane on the August 23rd release date, more on September 4th and similar dispersion from the existing and proposed shipping lanes on the afternoon of October 4, 1997. These results suggest that meteorology influences the direction and the magnitude of dispersion from ship emissions. Wind circulation patterns in the area offshore of Southern California can be very complex. Day to day, as well as diurnal, differences in wind directions can be very great and in turn can impact transport and diffusion mechanisms in the region.

B. MODEL SIMULATIONS

Model simulations were developed for two episode periods, August 3-7, 1997 and September 3-5, 1997, using an Eulerian air quality modeling system. In each case, the emissions of NO_x from each of the five control strategies were simulated without photochemistry and the net onshore mass flux into the SCAQMD was calculated. To assess the relative impacts of shipping emissions from the shipping lane and speed scenarios representing each control strategy, comparisons of the mass flux among the control scenarios were made to assess the relative impacts of shipping emissions. The accumulated mass flux and its distribution along the shoreline provide an indicator of the impact of offshore emissions on onshore air quality – the lower the mass flux, the lower the potential influence on onshore air quality. When comparing control strategies, the emissions from the control strategy with the lowest mass flux into the SCAQMD would therefore have the least effect on onshore air quality.

The results from the simulations are presented in Table VI-2. The data from August 3rd and September 3rd are not included. As explained previously, data on these days may not be representative because they are start-up days for the modeling simulations and may be overly influenced by initial conditions.

Table VI-2
Daily Net Mass Flux (tons/day) into the South Coast Air Basin from Simulation
Results for August 4-7 and September 4-5, 1997

Scenario	Aug. 4	Aug. 5	Aug. 6	Aug. 7	Sept. 4	Sept. 5
Current shipping lane	33.30	3.85	16.44	24.96	31.63	22.5
Speed control scenario #1	31.65	3.07	14.99	23.06	30.27	20.45
Speed control scenario #2	28.92	2.68	13.66	20.49	28.47	18.70
Speed control scenario #3	30.22	3.24	14.99	22.05	29.70	20.28
Proposed shipping lane	17.45	5.67	- 14.62	21.87	14.86	35.76

Some qualitative conclusions can be drawn from the simulation results. First, there is a mass flux benefit for all of the voluntary speed reduction alternatives for all the days simulated. While the magnitude varied from day to day, it correlates well with the expected emission reductions from each scenario. Scenario #2, which requires the most reduction in speed over a long distance and results in the greatest emission reductions in the SCAB inventory, demonstrated the largest reduction in the net mass flux for the three speed control scenarios. Similar to the results from the tracer study, the results from the model simulation of the proposed shipping lane did not reveal a consistent pattern. On two days, the largest benefit was seen from this control strategy, about a 50% reduction in flux, however, on both August 5th and September 5th, the mass flux was actually greater than that simulated for the base case. As discussed in Chapter V, it appears that the benefits from moving the shipping lane further offshore are highly dependent on the variable offshore wind flow patterns.

Obviously the days simulated represent a small subset of the total days in the SCAB. Therefore to put the modeling results in perspective, it would be useful to know how frequently the types of days simulated occur. To address this question, a meteorological classification analysis based on the meteorology and air quality from 1997 was conducted (see Appendix C). In this analysis, the 1997 days were sorted into frequency nodes, where a node represents a type of episode day. This analysis showed that the August and September episode days represent meteorological patterns that occur approximately 30% of the time and reflect 3 of the 6 types of days that have medium to high ozone potential in the SCAB. ⁵ Table VI-3 summarizes the results of the meteorological classification analysis.

⁵ The weather patterns in 1997 reflected a reduced ozone potential indicative of the El Nino weather circulation that was building that summer.

Table VI-3
Frequency of Occurrence for the Types of Days Simulated
(from Appendix C)

Day Simulated	Episode Node (or Type of Day)	Frequency of Occurrence in 1997
August 4	9	7.1%
August 5	9	7.1%
August 6	9	7.1%
August 7	10	1.9%
September 4	10	1.9%
September 5	6	22.2%

As a potential further aid in interpreting the results of the modeling simulations, the modeling results for the days simulated (from Table VI-2) were combined with their frequency of occurrence to derive a weighted average reduction in net mass flux relative to the base case. Since there were multiple simulation days in nodes 9 and 10, the fluxes were first averaged for the days in those nodes before combining with the frequency of occurrence. The results of this analysis are presented in Table VI-4 below. As shown, the greatest benefit is demonstrated from the simulation of speed control scenario #2. In this scenario, the precautionary zone speed limit of 12 knots is extended to the overwater boundary of the SCAB and resulted in approximately a 16% decrease in flux onshore. Speed control scenarios #1 and #3 had comparable benefits at 8% and 10% reduction respectively, and the proposed relocated shipping lane had the least benefit.

Table VI-4
Average Weighted Percent Change in Net Mass Flux (tons/day) into the South
Coast Air Basin from Simulation Results for August 4-7 and September 4-5, 1997

	Average	Flux by Node (tons	/day)	Weighted	Change in
Scenario	Node 9 (Aug. 4, 5, 6)	Node 10 (Aug. 7, Sept. 4)	Node 6 (Sept. 5)	Average Flux* (tons/day)	Weighted Flux from Base Case
Current shipping lane	17.86	28.30	22.50	6.80	-
Speed control scenario #1	16.57	26.67	20.45	6.22	-8%
Speed control scenario #2	15.09	24.48	18.70	5.69	-16%
Speed control scenario #3	16.15	25.88	20.28	6.14	-10%
Proposed shipping lane	12.58	18.37	35.76	9.18	+35%

^{*} Σ (node average) x (node frequency) for each of the nodes

Because of the limited number of days simulated, it is important to keep in mind the following caveats when interpreting the results in Table VI-4:

 A total of six days were simulated, representing meteorological patterns that occur approximately 30% of the time and reflect 3 of the 6 types of days that have medium

- to high ozone potential in the SCAB. However, the other three types of days with medium to high ozone potential were not captured.
- A single day (September 5) was used in the weighted average flux calculation for node 6, whereas there were multiple days available for the other two nodes. As shown in Table VI-2, fluxes for different days with the same node type can vary. It is not known how representative the September 5 flux is for an average node 6 day.
- The frequency distribution of meteorological patterns in 1997 is not necessarily representative of other years.

During the TWG discussions, questions were raised regarding how the results could be used to estimate the emission reductions with respect to the SIP. Consistent with current practices, the expected emission reductions that can be claimed for SIP credit are determined from the actual change in the emissions inventory (for South Coast Air Basin) - not a reduction based on photochemical model simulations. To approximate potential SIP credit for the different control strategies we calculated a control factor based on the emissions estimates for each control strategy as compared to the base case (i.e. a percent reduction or increase in emissions). This control factor was then applied to the forecasted inventory for marine vessels in 2010. Since the controls would only be applied during the cruising mode (not maneuvering or hotelling), the control factor was only applied to that portion of the inventory that represented ships in the cruise mode. Because we did not have an ungridded emissions estimate for the proposed shipping lane, the estimate for the proposed shipping lane is based on a control factor calculated from the gridded inventory. Three key assumptions with this approach are: 1) ship type and activity in 2010 is similar to the activity during the August 3-7, 1997 episode, 2) the ship activity during the August 3-7, 1997 episode is representative of a typical summer day, and 3) the gridded emissions for the proposed shipping lane provide a good approximation of the ungridded emissions inventory. As shown in Table VI-5, Speed control scenario #2 approaches the 1997 Ozone SIP (and 1994 Ozone SIP) M-13 target for the voluntary control strategies. In the 1997 SIP, the planned reductions for M-13 expected a 29% reduction in the cruising emissions from the ocean going fleet in the SCAB.

Table VI-5
1997 SIP Emission Reduction Estimates
Tons per Day NOx

Control Strategy	Expected Emission Reductions	Percent Change	Control Factor	1997 SIP Estimated Reductions (2010)*
Speed control scenario #1	-2.96	-10.5%	0.11	-2.9
Speed control scenario #2	-6.53	-28.5%	0.28	-7.3
Speed control scenario #3	-3.98	-18.8%	0.19	-4.9
Proposed shipping lane	+0.51	- +2.2%	0.02	+.52

*To determine the estimated reductions, the control factor was applied to the 1997 SIP projected 2010 N0x emissions (26.2 T/D) for ocean-going vessels calling on the POLB and POLA while in the cruising mode. These emission reduction estimates already account for the precautionary speed zone reduction requirement that was instituted in 1994 since the forecasted inventory is based on a 1997 SCAB baseline inventory.

C. SUMMARY OF FINDINGS

Based on the results from the tracer analysis and the modeling simulations, it can be concluded that a voluntary speed reduction control strategy would likely result in consistent emission reduction benefits in the SCAB with the magnitude of the benefits dependent on the extent of the speed reductions and the time spent in the reduced speed mode. Control Scenario #2, which requires a speed limit of 12 knots between the ports and the SCAB overwater boundary, appears to provide the greatest benefit with respect to both NO_x emissions and the flux of NO_x emissions that reach onshore, demonstrating approximately a 28% reduction in the emission inventory and a 16% reduction in flux when compared to the base case. Although the control strategy to move the shipping lane further offshore does provide benefits on certain types of days, it does not appear to provide a consistent benefit and it is not possible to reach definitive conclusions about this strategy. Because the modeling simulations did not consider photochemistry, it is also not possible at this time to determine the comprehensive air quality impacts relative to ozone and particulate matter formation attributed to NOx emissions from marine vessels from the various alternatives. To understand the comprehensive air quality impacts, comprehensive photochemical and aerosol modeling should be conducted. For the next SCAQMD Air Quality Management Plan update photochemical and aerosol modeling will be performed and should provide additional information on the impacts of shipping emissions on ozone and fine particulate formation.

APPENDIX A Scope of Analysis

Appendix A

SCOPE of ANALYSIS

Throughout the working group process, a number of issues were raised on which the TWG reached consensus that the issues were beyond the scope of the comparative analysis being conducted by the TWG. In this appendix, we provide a brief description of the main issues that were identified. The U.S. EPA intends to work with members of the TWG to evaluate any issues that may need to be addressed before making a decision on the most appropriate operational control strategy for marine vessels

<u>Future Ship Speeds</u>: The baseline emissions inventory is based on the estimated ship speeds for the current fleet of ships using the POLA and POLB. The TWG believed accurate data was not available to project the ship speeds that would occur in future years (i.e. 2010). Due to time constraints and lack of data, the comparative analysis is limited only to the current inventory; no projections were made for the future impact of any of the proposed control strategies. The future ship speeds and their impact on the emissions inventory and potential emission reductions from any control strategy may need to be considered when determining the most appropriate operation control for marine vessels.

Photochemical Modeling: Ship emissions can be involved in complex overwater chemical reactions which may impact the amount of NOx emissions that reach the shoreline. Because of time constraints and the unavailability of the complete modeling emissions inventory for SCOS97, the TWG agreed to use dispersion modeling to assess the on-shore impacts of the shipping emissions relative to the quantity of emissions that reach shore in the SCAB. Photochemical modeling will not be ignored however, as photochemical modeling will be conducted during the development of the next comprehensive plan update (AQMP update) for the SCAQMD, expected final in 2001. Photochemical modeling is needed for the attainment demonstration for the 1-hour federal ozone standard and will provide additional information about the impact of shipping emissions on ozone, PM₁₀ and toxics. For the next AQMP update the preferred control strategy will be included in the modeling exercise to help quantify the benefits of the overall control strategy on peak ozone and population exposure. We do not believe this will result in a change in our conclusions regarding the dispersion impacts of shipping emissions; however, once the chemistry is included in the modeling simulations, we may find that there are significant PM₁₀ benefits from reducing NOx emissions from ships offshore.

Impacts Beyond SCAB Boundaries: Both of the control strategies evaluated may have the potential to shift the impact of ship emissions to areas outside the SCAB. The TWG had numerous discussions on what areas may be impacted and whether such a shift in emissions would occur. However, the TWG agreed that determining impacts outside the SCAB was beyond the scope of the comparative analysis may need to be considered when determining the most appropriate operational control for marine vessels.

Economic, Logistic and Other Impacts of Potential Control Strategies: There were numerous discussions on the impacts of the proposed control strategies including impacts on the U.S. Navy's Sea Range off the southern California coast and the loss of time and income that may occur if ships take longer to approach the ports due to travelling along an alternative route or traveling at a reduced speed. These impacts were outside the scope of the TWG's comparative analysis; however, the TWG agreed this may need to be considered when proposing a control strategy for marine vessels.

Appendix B

Day Specific Ship Activity Information And Emissions

Summary of Activity and Emissions Data for the August 3-7, 1997 SCOS97 Episode

In table B-1 we provide a detailed summary of the ship activity and emissions data for the August 3-7, 1997 episode. This includes information on the ship type, date, time, and direction of arrival and departure in the South Coast waters and the parameters used to calculate the NOx emissions. Additional parameters provided by the Marine Exchange but not included in this Table are call signs, previous port, next port, speed, initial berth, type of cargo, gross tonnage, and net tons. The following abbreviations are used to identify the ship types: Bulk Carrier (BBU); Bulk/Container Carrier (BCB); General Cargo (GGC); Refrigerated Cargo (GRF); Passenger (MPR); Vehicle Carrier (MVE); Chemical Tanker (TCH); Tanker (TTA); Container Carrier (UCC); and RORO Container Carrier (URC). In Table B-2 information on U.S. Navy ships is provided. In addition, we have included information on other pollutant emission estimates for the ships included in the inventory for the August 3-7 1997 SCOS97 episode as well as the methodology followed to estimate the emission benefits of the precautionary speed zone.

Table B-1

Activity Data and NOx Marine Vessel Inventory for the August 3-7, 1997 Episode

		-	-				-												
													•			Cruise	Se		
Ship Name	Vessel En	Engine Type # Eng.	ng. Cycle	Actual Avg./Corre	al orre ced Arrive Gate	Arrive Gate Dir		Arrive Date, Time	Depart Gate Dent Dir	Dent Dir	Denart Date Time	Aug 3-7th only-Hrs at	Entry Cruise for 3,4,5,6,7	Exit Cruise for 3,4,5,6,7	Exit Cruise Entry Cruise for 3,4,5,6,7 Dist.	Entry Cruise Time	U	ę.	Actual HP
BEL ACE	╌┤	η	2	12.46	_		H	-	QUEEN	z	8/3/97 14:35	4.42	χ. Χ	γ.	34	2 73	(nmiles)	(hours)	Llyods
FARENCO	BBU		7	+	+	EN	+	8/3/97 16:45	ANGEL	z	8/23/97 10:25	103.23	¥	å	40	2.90	39	2.83	19429
MODI	ppp	1	7 (+	+	+	+	8/2/97 16:10	ANGEL	z	8/9/97 16:35	119.98	δ	ž	40	2.77	39	2.70	11600
NOSHIRO MARII	Dag	2 6	7 0	+	+	+	+	8/4/97 1:00	OUBEN	S	8/4/97 12:30	11.50	٨	¥	40	3.00	38	2.85	13100
OTRADA	RRII	1	10	15.75	ANGEL	-	+	7/31/9/17/15	ANGEL	z	8/6/97 17:50	89.83	°Z	>	40	3.21	39	3.13	11070
PERICLES C.G.	BBU		1 6	+	+		+	1/31/9/ 4:10	ANGEL	0	8/3/97 14:15	14.25	°Z	>-	40	2.54	38	2.41	13320
SAGACIOUS NIKE	BBU		2 7	+	+	-		8/4/97 15:15	OTHEN	0 2	6/2/9/ 19:35	19.58	S ?	λ;	40	2.90	38	2.75	17400
SINGAPORE ACE	BBU	0	2	+	╁	╀	-	8/6/97 1:35	OUEEN	2 2	8/22/97 5:30	46.40	× >	ž ž	40	2.90	39	2.83	9750
PACPRINCE	BCB	D.	2	13,04	┢	-	-	8/5/97 9:00	OUEEN	5 00	8/6/97 6-35	24.58	- >	§ >	04	3.35	65	3.27	15800
PACPRINCESS	BCB	D	2		Н	EN S		8/6/97 13:40	QUEEN	z	8/8/97 15:15	34.32	* *	. 2	34	2.50	300	2.86	0050
STAR DROTTANGER	ВСВ	D D	2	+	\dashv			8/5/97 4:50	ANGEL	S	8/6/97 21:20	40.50	Y	Y	34	2.55	388	2.85	13100
KARINA BONITA	ည	Δ,	7	+	+	Z N	-	8/3/97 9:35	QUEEN	S	8/5/97 5:25	43.83	Y	Y	40	2.62	38	2.49	11200
WARAMA	3 5	٦ (7	+	+		8/3	8/3/97 15:25	ANGEL	S	8/3/97 23:40	8.25	¥	Y	40	2.70	38	2.57	10120
CHIOITTA ERANCES	3 2	ם כ כ	4	15.90	+	N C	8/8/	8/3/97 6:50	OUEEN	z	8/4/97 2:40	19.83	7	>	34	2.45	39	2.81	8090
MAGIC	GRE	+	╀	t	OTHER	2 2	000	01.97.0119	CUEEN	Λ C	8/8/97 9:05	20.07	Α.	နှ	34	1.87	38	2.09	16213
TUNDRA KING	GRF	1	1	+	+	2 2	78	8/4/97 6:10	ANGEIN	0	07:5/6/6/8	12.02	× ;	*	34	1.87	38	2.09	8937
HOLIDAY	MPR	D D	7	11.70	+	EL	3/8	8/4/97 6-15	ANGEL	20	8/4/97 18:15	12.00	*	× >	40	2.20	38	2.09	13250
JUBILEE	-	D	7	\vdash	\vdash	ELS	8/8	8/3/97 7:05	ANGEL	2	8/3/07 17:20	10.25	1 >	7	34	16.7	28	3.25	31973
VIKING SERENADE		D	. 2		\vdash	EL S	7/8	8/4/97 6:25	ANGEL	S	8/4/97 17:30	11.08	· >	\	34	3.00	8 8	245	31962
AYAII	MVE	D	4	16.38		EL S	9/8	8/6/97 10:55	ANGEL	z	8/6/97 19:35	8,67	\ \ \	, >	34	20.0	30	2 28	000/7
BELLONA	MVE	D	2	\parallel	QUEEN	EN		8/4/97 8:40	QUEEN	z	8/5/97 4:25	19.75	Y	>	40	2.44	39	2.38	11560
FRANCONIA	MVE	۵	2	+	+	S	8/7	8/7/97 20:50	QUEEN	z	8/8/97 16:25	3.15	Y	δ	34	2.11	39	2.42	12480
GREEN LAKE	MVE		7	+	+	+	+	8/6/97 23:15	OUEEN	z	8/7/97-18:50	19,58	¥	Y	40	2.41	39	2.35	13119
OPAT RAV	MVE	٦ -	7 (16.70	+	Z Z	+	8/7/97 9:55	ANGEL	z ;	8/7/97 23:55	14.00	Y	۲	40	2.40	39	2.34	1300
STOLT TENACHY	TOT	2 6	7 6	+	ANGEL	+	+	8/3/97 20:50	ANGEL	z	8/8/97 15:30	99.15	X	2	40	2.43	39	2.37	12400
BT NESTOR	TTA	2 0	10	14.60	+	+	+	197 19:30	COPEN	200	8/9/97 5:30	52.48	۲ ;	ę:	43.5	2.88	38	2.51	17400
SAMUEL GINN	TTA		1 2	+	+	+	1	02.57 76/3/8	OTHER	0 2	8/8/07 2:15	24.38	S >	x 2	34	2.32	38	2.59	16799
ACAPULCO	Son	Ω	7	20.02	\vdash	-	H	8/6/97 5:30	ANGEL	zz	8/7/97 19:25	37.92	+ >	۶ کا	43.5	1.70	39	2.98	18900
ALLIGATOR BRAVERY	CCC	D	2	21.48	ANGEL	EL N	-	8/5/97 18:15	ANGEL	z	8/7/97 14:00	43.75	X	\ - -	40	1.70	30	28.1	16606
APL SINGAPORE		D	2		\dashv	-		7/31/97 18:10	ANGEL	z	8/6/97 3:40	75.67	Š	7	40	1.66	39	1.62	66398
AXEL MAEKSK	220	D C	7 7	22.02	OUEEN	Z Z	+	8/2/97 6:30	OUBEN	z	8/3/97 19:45	19.75	No	Å	40	1.82	39	1.77	45800
BROOKT VN BRIDGE	315	2 6	7 (+	+	+	+	197 12:35	ANGEL	z ;	8/12/97 18:25	11.40	*	ŝ	40	2.14	39	2.09	29000
CALIFORNIA ILPITER	100	3 6	10	20.02	ANGEL	N I	+	1/07 4-45	COBEN	z 2	8/4/97 17:25	41.42	°Z;	>	9 5	2.07	39	2.01	37440
CALIFORNIA SATURN	SOD	Ω	2	+	╁	-	+	8/7/97 13:50	ANGEL	z	8/8/97 18:50	10.15	+ >	S Z	240	2.00	39	56.1	29520
CAPE CHARLES	acc	D 1	2	20.02	Н	EL S	8/1	8/1/97 14:00	ANGEL	z	8/3/97 3:10	3.17	No.	2	34	02.1	39	1.95	32800
CHASTINE MAERSK	CCC	Δ	2	16.84	+	-		8/5/97 21:05	QUEEN	S	8/8/97 3:30	50.90	Υ	No	34	2.02	38	2.26	14248
CHEIUMAL	220		7	21.39	+	Z I		8/5/97 6:15	ANGEL	S	8/6/97 19:30	37.25	¥	አ	40	1.87	38	1.78	38542
DOI F ECTIADOR	221	0 0	4 (+	ANGEL	+	+	8/6/97 7:05	ANGEL	S	8/8/97 6:55	40.90	>	Š	40	2.34	38	27.7	22799
EMPRESS DRAGON	2012	2 6	7 (+	+	+	+	50.67.60	ANGEL	s;	8/4/97 16:55	31.00	Y	X	34	1.85	38	2.07	20650
EVER GLOWING	3 5	2 -	4 6	17.17	+	N N	+	8/3/97 10:30	Nacer	Z	8/5/97 17:15	48.75	Y	۲ ;	40	1.89	39	1.84	42100
EVER GRADE	COC		2 2	+	+	+	-	877197735	ANGEL	2	8/4/07 5-05	20.03	Y N	2 >	9	2.12	38	2.01	23180
EVER RACER	000	-	,	╁	+	+	+	7/07 5-10	ANGEL	. 0	00.016/2/0	10 00	0 2	- 2	40	7.14	39	2.09	71000
EVER UNION))))	Ω	2 2	20.42	╁		+	8/2/97 15:10	ANGEL	2	8/4/97 20:30	44 50	- SZ	202	34	10.1	88 88	08.1	42120
GEORGE WASHINGTON BRIDGE	CCC	Δ	7	+	╁	-	+	8/4/97 17:35	OTHEN	2	8/7/97 15:50	70.25	ONI >	÷ >	40	8 7	39	16.1	01565
HANJIN LONDON	acc	D	2		-	Z EN	-	8/7/97 22:35	OUEEN	z	8/10/97 14:50	1.40	Å	°Z	40	1 69	39	1 65	74494
HANJIN PARIS	CCC	D 1	2	21.97	-			8/1/97 3:25	QUEEN	z	8/3/97 13:55	13.92	٥χ	*	40	1.82	39	1.78	74494
HYUNDAI DYNASTY	200	٦	2	+	\dashv	4		8/5/97 2:20	QUEEN	z	8/6/97 23:45	45.42	¥	Y	40	2.04	39	1.99	32560
HYINDAI INDEPENDENCE	+	2 6	7 0	+	+	Z Z	+	8/7/97 19:30	OUEEN	z	8/10/97 14:40	4.48	λ ;	δ.	40	1.66	39	1.62	74419
י מטיומעוונוזמעווו וחעיוט וווו	4	1	1	23.40	Nana	-	+	7/31/97 15:20	QUEEN	z	8/3/97 15:20	15.33	No	X	40	1.71 L	39	1.66	74520

 Table B-1

 Activity Data and NOx Marine Vessel Inventory for the August 3-7, 1997 Episode

Author-Gase	
Antive Date, Time Depart Gase Date, Date, Time Date, Time Date, Date and Da	
Anne Date, filled Depart Date, Time Port (VN)	
S 8669721300 QUEEN N 877971935 22.28 Y Y 41.42 319 N 8449772130 QUEEN N 8459772130 38.22 Y Y 40 1.14 319 N 844975454 QUEEN N 84597710 38.22 Y Y 40 1.17 319 N 844975455 QUEEN N 84597710 40 Y Y 40 1.17 319 N 84497655 ANGEL N 84697120 40 N Y 40 1.16 319 N 844971018 ANGEL N 84697120 ANGEL N 84697120 ANGEL N 1.17 319 N 84497120 ANGEL N 84697120 ANGEL N Y A A 1.16 319 N 81997600 ANGEL N 84697720 A A A A A	
N 84697 15:10 QUEEN N 84697 15:10 QUEEN N 84697 15:10 QUEEN N 84697 15:10 QUEEN S 84697 15:30 N Y Y 40 1.17 38 N 8 4497 15:30 ANGEL N 8 4497 16:35 ANGEL N 8 4497 16:30 N Y 40 1.76 39 N 8 4497 15:30 ANGEL N 8 4497 16:30 N Y 40 1.76 39 N 8 4497 16:30 ANGEL N 8 4497 16:30 N Y 40 1.76 39 N 8 1797 6:30 ANGEL N 8 4497 16:30 N Y 40 1.76 39 N 8 1797 6:30 ANGEL N 8 4497 16:30 N Y 4 0 1.76 39 N 8 1797 6:30 ANGEL N 8 4497 16:30 N Y Y 4 0 1.76 39	OUEEN
N SM6971210 QUEEN S BM6971655 1442 Y Y 40 171 38 N 846972120 ANGEL N 846971855 14222 N Y 40 176 39 N 846972605 ANGEL N 8777710 65.67 Y Y 40 120 39 N 84697605 ANGEL N 877971210 65.67 Y Y 40 120 39 N 81697625 QUEEN N 876977110 65.67 N Y 40 126 39 N 81797625 QUEEN N 869777210 65.67 N Y 40 126 39 N 817977215 ANGEL N 86977210 65.67 Y Y 40 126 39 N 817977215 ANGEL N 86977210 40.08 Y 40 12.65 39	QUEEN
S 711/717 184-54 AUREL S 844971 18-55 46.92 No Y Y 40 208 39 N 84497 18-50 ANGEL N 87497 18-55 40.008 Y Y 40 1.76 39 N 84497 18-50 ANGEL N 84697 18-00 No Y 40 1.76 39 N 81497 6-55 ANGEL N 84697 18-0 40 1.76 39 N 81497 6-50 QUEBN N 84697 18-0 QUEBN N 84697 8-0 1.76 N Y 40 1.76 39 N 81697 6-50 QUEBN N 84697 8-0 7.75 N Y 40 1.76 39 N 81697 6-50 QUEBN N 84697 8-0 7 Y Y 40 1.76 39 N 81697 6-50 QUEBN N 84697 8-0 Y Y Y 41 1.78	QUEEN
N 84/97 636 ANGEL N 81/97 15.0 6.667 Y Y 40 1.76 39 N 84/97 643 ANGEL N 84/97 18.0 4.200 No Y 40 1.76 39 N 71/97 18.10 ANGEL N 84/97 18.0 4.200 No Y 40 1.76 39 N 71/97 18.10 ANGEL N 84/97 18.0 4.200 No Y 40 1.76 39 N 81/97 630 QUEBN N 84/97 18.0 4.200 No Y 40 2.25 38 N 81/97 51.10 QUEBN N 84/97 12.10 2.017 No Y 40 1.86 39 N 81/97 51.10 QUEBN N 84/97 12.10 2.000 Y Y 40 1.76 39 N 81/97 51.10 QUEBN N 84/97 12.10 3.000 Y Y 40 1.76 39 N 81/97 51.20 QUEBN N 84/97 12.10 3.000 Y Y 40 1.76 39 N 81/97 620 QUEBN N 84/97 12.10 3.000 Y Y 40 1.76 39 N 81/97 620 QUEBN N 84/97 12.10 3.000 Y Y Y 40 1.76 39 N 81/97 620 QUEBN N 84/97 12.10 3.000 Y Y Y 40 1.76 39 N 81/97 620 QUEBN N 84/97 12.10 3.000 Y Y Y 40 1.76 39 N 81/97 620 QUEBN N 84/97 12.10 3.000 Y Y Y 34 2.14 41.5 S 81/97 12.20 QUEBN N 84/97 12.20 44.58 N Y Y Y Y A A A N 81/97 12.20 QUEBN N 84/97 12.20 44.58 N Y Y Y A A A N 81/97 12.20 QUEBN N 84/97 12.20 44.58 N Y Y A A A A N 81/97 12.20 QUEBN N 81/97 12.20 44.58 N Y A A A A N 81/97 12.20 QUEBN N 81/97 12.20 44.58 N N A A A A N 81/97 12.20 QUEBN N 81/97 12.20 44.58 N N A A A A N 81/97 12.20 QUEBN N 81/97 12.20 A A A A A A N 81/97 12.20 QUEBN N 81/97 12.20 A A A A A A A N 81/97 12.20 QUEBN N 81/97 12.20 A A A A A A A N 81/97 12.20 QUEBN N 81/97 12.20 A A A A A A A N 81/97 12.20 QUEBN N 81/97 12.20 A A A A A A A N 81/97 12.20 QUEBN N 81/97 12.20 A A A A A A A N 81/97 12	ANGEL
N 87,979 12-00 ANGEL N 84,971 22-10 No Y Q Q Q Q Q Q Q Q Q	ANGEL
N 771/1971 18:10 ANGEL N 86/97 3:40 75.67 No Y 40 1.86 39 N 8 17/197 18:10 ANGEL N 8 17/197 18:20 N Y 40 1.18 39 N 8 17/197 25:30 QUEEN N 8 17/197 25:30 QUEEN N Y 40 2.13 39 N 8 17/197 25:30 QUEEN N 8 16/197 25:30 10.05 Y 40 1.86 39 N 8 17/197 25:30 QUEEN N 8 16/197 25:30 2.06 Y Y 40 1.86 39 N 8 17/197 25:30 QUEEN N 8 16/197 25:30 3 4.75 Y Y 40 1.78 39 N 8 16/97 16:00 QUEEN N 8 16/197 25:00 3 4.75 Y Y 40 1.78 39 N 8 16/97 17:20 QUEEN N 8 16/197 25:00 3 4.75 Y Y 40	ANGEL
N 8/1979 6.25 QUEEN S 8/1971 8.55 12.50 Y 40 2.25 38 N 8/1972 6.10 QUEEN N 8/397 20:10 No Y 40 2.51 39 N 8/1972 6.10 QUEEN N 8/497 2.25 26.42 Y Y 40 1.83 39 S 8/1972 6.10 QUEEN N 8/497 2.25 26.42 Y Y 40 1.83 39 N 8/1976 6.10 QUEEN N 8/1977 6.10 Y Y Y 40 1.78 39 N 8/1976 6.05 QUEEN N 8/1977 6.00 N Y Y 40 1.78 39 N 8/1977 6.20 QUEEN N 8/1977 6.00 N Y Y Y 40 1.78 39 N 8/1977 6.20 QUEEN N 8/1977 6.00 N Y Y Y Y X Y <	ANGEL
N 8/1979 23:0 ANCHEL N 8/1979 23:0 ANCHEL N 8/1979 23:0 ANCHEL N 8/1979 23:0 ANCHEL N Y 40 2.51 39 N 8/1979 63:0 QUEEN N 8/1979 63:0 QUEEN N 8/1979 63:0 Y 40 2.65 39 N 8/1979 63:0 QUEEN N 8/1971 72:0 36.00 Y Y 40 2.65 39 N 8/1979 61:0 QUEEN N 8/1971 72:0 30,00 Y Y 40 1.78 39 N 8/1979 62:0 QUEEN N 8/1971 62:0 A Y Y 40 1.78 39 N 8/1979 62:0 QUEEN N 8/1971 62:0 A Y Y Y A A 1.78 39 N 8/1971 62:0 QUEEN N 8/1971 62:0 A Y Y Y A Y X Y	ANGEL
N 81/297 6:10 QUEEN N 84/297 13:20 No Y 40 2.65 39 S 8 N 81/297 6:30 QUEEN N 84/297 13:25 26.42 No Y 40 1.83 39 S 8 81/797 16:30 16.25 Y Y 40 1.24 33 N 8 8/797 16:30 16.25 Y Y 40 1.24 39 N 8/2977 6:05 QUEEN N 8/4977 16:30 34.75 Y Y 40 1.76 38 N 8/2977 6:05 QUEEN S 8/6971 6:30 34.75 Y Y 40 1.76 38 N 8/2977 6:05 QUEEN S 8/6971 17:20 QUEEN Y Y Y 41.78 39 S 8/297 16:00 QUEEN S 8/897 17:10 3.00 Y Y 43 2.41 43.5 S	ANGEL
N 81/97 5:10 QUEEN N 87/97 2:13 20-642 NO Y 40 1.83 39 N 8 1/97 5:15 QUEEN N 87/97 7:13 58.92 Y Y 40 2.34 39 N 8 1/97 5:15 QUEEN N 87/97 12:10 30.00 Y Y 40 2.34 39 N 8 1/97 6:20 QUEEN N 87/97 12:10 2.00 NO Y 40 2.24 39 N 8 1/97 6:20 QUEEN N 8/6/97 16:20 2.00 NO Y 40 2.24 39 N 8 1/97 6:20 QUEEN N 8/6/97 17:10 1.00 Y 40 2.24 31 N 8 1/97 16:20 QUEEN N 8/6/97 17:20 QUEEN N Y Y 43:5 31 38 S 8 1/97 17:20 QUEEN W 8/6/97 18:0 Y Y Y 43:5	QUEEN
S 81/37 513 OUDEN N 81/377 513 OUDEN N N N 91/37 513 OUDEN N 81/377 513 OUDEN N<	QUEEN
N 84/97/12:10 305.22 Y Y 40 1.14 39 N 84/97/16:10 QUEEN N 84/97/12:10 300.00 Y Y 40 1.16 38 N 8/5/97 6:00 QUEEN S 8/6/97 10:10 2.00 No Y 40 1.16 38 N 8/5/97 6:20 QUEEN S 8/6/97 10:10 1.773 Y Y 40 1.16 38 N 8/197 16:15 QUEEN S 8/6/97 17:15 7.73 Y Y 40 2.31 38 S 8/197 16:15 QUEEN S 8/8/97 17:15 7.73 Y Y 40 2.31 38 S 8/8/97 16:15 QUEEN W 8/8/97 17:15 7 Y Y 43.5 31 38 S 8/6/97 16:00 QUEEN W 8/6/97 10:00 1.67 Y Y Y 34 2.63 43.5	OUEEN
N 88/597 650 QUEEN S 86/597 16.50 A Y 4 1.76 38 N 8 87/597 650 QUEEN S 88/597 16.50 A 4 1.78 38 N 8 87/597 650 QUEEN S 88/597 16.50 A A 4 1.78 38 N 8 87/597 16.50 QUEEN N 88/597 16.50 A	QUEEN
N 8/297 6.20 No Y 40 2.28 38 N 8/297 6.20 QUEEN S 8/397 17:15 7.73 Y A 40 2.28 38 S 8/297 6.53 QUEEN N 8/397 17:15 7.73 Y Y 34 1.78 39 S 8/397 16:00 QUEEN W 8/397 17:10 7.73 Y Y 34 2.41 43.5 S 8/397 16:00 QUEEN W 8/397 21:45 37.08 Y Y 34 2.41 43.5 W 8/397 16:20 QUEEN W 8/397 21:45 24.48 Y Y 43.5 2.74 38 W 8/397 13:00 QUEEN W 8/397 21:45 24.48 Y Y 43.5 3.24 3.32 43.5 W 8/397 13:45 QUEEN W 8/397 13:45 A/458 No Y 43.5 3.74 33 <th< td=""><td>OTHERN</td></th<>	OTHERN
S 8/2/97 53.53 QUEEN N 8/3/97 18:05 16.06 No Y 34 1.78 39 S 8/2/97 16:15 QUEEN S 8/8/97 17:15 7.73 Y Y 34 2.41 43.5 S 8/3/97 16:00 QUEEN W 8/5/97 5:05 37.08 Y Y 34 2.41 43.5 S 8/6/97 17:20 QUEEN W 8/6/97 19:00 1.67 Y Y 34 2.41 43.5 W 8/6/97 17:20 QUEEN W 8/6/97 19:00 1.67 Y Y 34 2.41 43.5 W 7/2/8/97 13:10 QUEEN W 8/6/97 13:20 QUEEN W 8/8/97 21:20 44.56 N Y 43.5 3.27 43.5 W 7/30/97 13:10 QUEEN W 8/19/77 22:20 44.00 Y Y 43.5 3.27 43.5 W 8/6/97 13:20 QUEEN W 8/	OTHEN
N 8/1/97 16:15 QUEEN S 8/8/97 17:15 7.73 Y No 40 2.31 38 S 8/3/97 16:00 QUEEN W 8/5/97 5:05 37.08 Y Y 34 2.41 43.5 S 8/6/97 17:20 QUEEN W 8/6/97 19:00 1.67 Y Y 34 2.41 43.5 W 8/6/97 17:20 QUEEN W 8/6/97 19:00 1.67 Y Y 34 2.41 43.5 W 8/6/97 17:20 QUEEN W 8/6/97 19:00 1.67 Y Y 34 2.41 43.5 W 7/28/97 13:0 QUEEN W 8/8/97 21:45 24.48 Y No 43.5 3.74 38 W 7/30/97 16:45 QUEEN W 8/8/97 18:00 18.00 No Y 43.5 3.74 38 W 8/8/97 13:45 ANGEL N 8/8/97 18:00 18.00 Y Y 40 <td>OUEEN</td>	OUEEN
S 812/97 16:00 QUEEN W 8/5/97 5:05 37.08 Y Y 34 2.41 43.5 S 8 /6/97 17:20 QUEEN W 8/6/97 12:00 1.67 Y Y 34 2.41 43.5 W 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	OUEEN
S 8/3/97 16:00 QUEEN W 8/5/97 5:05 37.08 Y Y 34 2.41 43.5 S 8/697 17:20 QUEEN W 8/697 19:00 1.67 Y Y 34 2.41 43.5 W 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
S 8/697 17:20 QUEEN W 8/697 19:00 1.67 Y Y 34 2.63 43.5 W 8/697 17:20 QUEEN W 8/897 21:45 24.48 Y No 43.5 3.32 43.5 W 7/2897 13:10 QUEEN W 8/897 21:45 24.48 Y No 43.5 3.74 38 W 7/2897 13:10 QUEEN W 8/897 21:30 44.58 No Y 43.5 3.74 38 W 7/2897 13:45 QUEEN W 8/897 13:20 44.58 No Y 43.5 3.74 38 W 7/3097 16:45 QUEEN W 8/1397 18:00 18.00 No Y 43.5 3.04 3.5 W 8/697 13:45 ANGEL W 8/1397 18:00 18.00 No Y 43.5 3.74 38 W 8/697 16:45 W 8/897 18:20 48.00 Y 43.5 2.74 <td>QUEEN</td>	QUEEN
W 8/6/97 23:30 QUEEN W 8/8/97 21:45 24.48 Y No 43.5 3.32 43.5 W 7/28/97 13:10 QUEEN W 8/8/97 21:45 24.48 Y No 43.5 3.32 43.5 W 7/28/97 13:10 QUEEN W 8/8/97 22:20 44.58 No Y 43.5 3.74 38 W 7/30/97 16:45 QUEEN W 8/4/97 22:20 48.00 No Y 43.5 3.74 38 W 7/30/97 16:45 QUEEN W 8/13/97 22:00 48.00 Y 43.5 3.05 43.5 W 8/59/7 13:45 ANGEL S 8/13/97 22:00 48.00 Y 43.5 3.05 3.05 W 8/59/7 13:45 ANGEL W 8/13/97 22:00 49.06 Y 43.5 3.15 3.9 W 8/59/7 20:00 ANGEL W 8/8/97 12:0 20.25 Y Y 40 2.07	QUEEN
W 8/6/97 23:30 QUEEN W 8/8/97 21:45 24.48 Y No 43.5 3.32 43.5 W 7/28/97 21:30 QUEEN W 8/8/97 21:45 24.48 Y No 43.5 3.32 43.5 W 7/28/97 21:20 QUEEN W 8/19/97 20:20 44.58 No Y 43.5 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.0	
W 8/69723:30 QUEEN W 8/89721:45 24.48 Y No 43.5 3.32 43.5 W 7/28/9713:10 QUEEN S. 8/49720:35 44.58 No Y 43.5 3.74 38 W 7/28/9714:20 QUEEN W 8/1/9720:35 44.58 No Y 43.5 3.05 43.5 W 7/30/9716:45 QUEEN W 8/1/9712:00 Y 43.5 3.05 43.5 W 8/1/9716:45 QUEEN W 8/1/9712:00 Y 43.5 3.05 43.5 W 8/1/9716:45 QUEEN W 8/1/9712:05 48.00 Y 43.5 3.05 43.5 W 8/1/9716:15 ANGEL S 8/1/971:05 48.08 Y Y 43.5 2.74 38 W 8/1/971:30 ANGEL S 8/8/9718:20 22.48 Y Y 40 2.07 39 N 8/1/971:30	
W 8(69723:30 QUEEN W 8(89721:45) 24.48 Y No 43.5 3.32 43.5 3.32 W 7728/97 13:10 QUEEN S 8(49720:25) 44.58 No Y 43.5 3.74 33 3.35 W 7730/97 13:45 QUEEN W 8/19/77 20:20 49.06 No Y 43.5 3.05 3.05 W 7730/97 13:45 QUEEN W 8/13/97 20:0 No Y 43.5 3.13 39 2.80 W 8/597 20:0 QUEEN W 8/13/97 20:0 No Y 43.5 3.13 39 2.80 W 8/597 13:45 ANGEL W 8/13/97 13:0 49.0 Y 43.5 2.74 38 2.75 W 8/597 13:0 ANGEL W 8/13/97 13:0 2.248 Y Y 40 2.77 43.5 2.74 38 2.39 N 8/397 5:05 ANGEL <td></td>	
8/6/97 23:30 QUEEN W 8/8/97 21:45 24.48 Y No 43.5 3.22 43.5 3.23 7/28/97 13:10 QUEEN S 8/4/97 20:35 44.58 No Y 43.5 3.13 3.95 3.39 7/28/97 12:0 QUEEN N 8/1/97 20:30 49.00 No Y 43.5 3.13 3.95 2.80 8/5/97 12:0 QUEEN N 8/1/97 18:00 18.00 No Y 43.5 3.13 3.95 2.80 8/5/97 13:45 ANGEL W 8/1/97 18:00 18.00 No Y 43.5 3.13 3.95 2.80 8/5/97 13:45 ANGEL W 8/1/97 12:0 22.48 Y No 43.5 2.74 38 2.37 8/2/97 5:0 ANGEL N 8/4/97 12:0 20.25 Y Y 40 2.07 39 2.02 8/4/97 1:0 QUEEN W 8/6/97 16:1 20.25 Y	
W 7728/97 15:10 QUEEN S 84/97 20:35 44.58 No Y 43.5 2.74 38 2.39 W 8/5/97 21:20 QUEEN W 8/7/97 22:20 49.00 Y No 43.5 3.05 43.5 3.05 43.5 3.05 43.5 3.05 43.5 3.05 43.5 3.05 43.5 3.05 43.5 3.05 43.5 3.05 43.5 3.05 43.6 43.5 3.05 43.6 3.05 43.6 43.5 2.75 43.6 2.75 43.6 2.75 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5	QUEEN
W 81597 21:20 QUEEN W 81797 22:20 49.00 Y No 43.5 3.05 43.5 3.05 W 73.097 16:45 QUEEN N 81/97 18:00 18.00 No 43.5 3.15 39 2.80 W 81/97 16:45 QUEEN N 81/97 18:00 46.08 Y 43.5 2.16 43.5 2.75 W 81/97 20:00 ANGEL W 87/97 18:20 49.08 Y Y 43.5 2.76 43.5 2.76 W 81/97 20:0 ANGEL S 81/97 18:20 22.48 Y Y 43.5 2.76 43.5 2.76 N 81/97 16:0 ANGEL N 81/97 18:20 22.48 Y Y 40 2.77 39 2.29 N 81/97 4:30 ANGEL N 81/97 18:20 22.48 Y Y 40 2.07 39 2.02 N 81/97 4:30 ANGEL	QUEEN
W 7730/97 16:45 QUEEN N 813/97 18:00 No Y 43.5 3.13 39 2.80 S 8/5/97 18:45 ANGEL S 8/13/97 28:0 58.23 Y No 34 2.46 38 2.75 W 8/5/97 18:45 ANGEL W 8/13/97 28:0 4 43.5 2.74 38 2.37 W 8/5/97 18:0 ANGEL S 8/8/97 18:0 22.48 Y Y 43.5 2.74 38 2.39 N 8/3/97 5:05 ANGEL N 8/4/97 12:0 20.25 Y Y 40 2.74 38 2.39 N 8/4/97 5:05 ANGEL N 8/6/97 16:0 20.25 Y Y 40 2.07 39 2.02 N 8/4/97 4:0 W 8/6/97 16:0 20.25 Y Y 40 2.07 39 2.02 N 8/6/97 16:0 QUEEN W 8/6/97 18:0 <	QUEEN
S 8/5/97 13:45 ANGEL S 8/13/97 23:50 58.23 Y No 34 2.46 38 2.75 W 8/5/97 20:00 ANGEL W 8/13/97 21:05 49.08 Y Y 43.5 2.76 43.5 2.76 N 8/15/97 13:0 ANGEL N 8/8/97 18:20 22.48 Y Y 40 2.07 39 2.03 N 8/15/97 13:0 ANGEL N 8/4/97 13:0 20.25 Y Y 40 2.20 66 3.63 N 8/15/97 15:30 ANGEL W 8/9/97 44:0 17.82 Y No 40 2.19 66 3.61 W 8/697 15:30 ANGEL W 8/9/97 45:3 32.48 Y No 66 3.21 66 3.51	OUEEN
W 8/5/97 20:00 ANGEL W 8/1/97 121:05 49.08 Y Y 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 43.5 2.76 38 2.99 N 8/397 5:05 ANGEL N 8/497 13:20 20.25 Y Y 40 2.07 39 2.02 N 8/497 4:30 ANGEL W 8/697 16:15 59,75 Y Y 40 2.19 66 3.61 W 8/697 16:10 QUEEN W 8/997 4:40 17.82 Y No 40 2.19 66 3.61 W 8/697 16:10 ANGEL W 8/997 4:40 17.82 Y No 66 3.21 66 3.21	ANGEL
W 87/1971:30 ANGEL S 8/8/9718:20 22.48 Y No 43.5 2.74 38 2.39 N 8/8/975:05 ANGEL N 8/4/9712:0 20.25 Y Y 40 2.07 39 2.02 N 8/4/974:30 ANGEL W 8/6/9716:15 59,76 Y Y 40 2.07 39 2.02 N 8/4/974:30 ANGEL W 8/6/9716:15 59,76 Y Y 40 2.19 66 3.61 W 8/6/9716:30 ANGEL W 8/9/975:35 32.48 Y No 66 3.21 66 3.21	ANGEL
N 8/3/97 5:05 ANGEL N 8/4/97 1:20 20.25 Y Y 40 2.07 39 2.02 N 8/4/97 4:30 ANGEL W 8/6/97 16:15 59,75 Y Y 40 2.20 66 3.63 N 8/197 6:10 QUEEN W 8/6/97 4:40 17,82 Y No 40 2.20 66 3.61 W 8/6/97 15:30 ANGEL W 8/9/97 4:40 17,82 Y No 66 3.21 66 3.51	ANGEL
N 8497430 ANGEL W 8/69716:15 59.75 Y Y 40 2.20 66 3.63 N 871976:10 QUEEN W 8/997440 17.82 Y No 40 2.19 66 3.61 W 8/69715:30 ANGEL W 8/9975:35 32.48 Y No 66 3.21 66 3.21	ANGET
N 87/97 6:10 QUEEN W 8/9/97 4:40 17.82 Y No 40 2.19 66 3.61 W 8/6/97 15:30 ANGEL W 8/9/97 5:35 32.48 Y No 66 3.21 66 3.21	ANGEL
W 8/6/97 15:30 ANGEL W 8/9/97 5:35 32.48 Y No 66 3:21 66 3:21	OUEEN
	ANGEL
	1

Table B-1Activity Data and NOx Marine Vessel Inventory for the August 3-7, 1997 Episode

_	Exit PZC Diet		9	9	3,5	9	3.5	C.E		9	9	9	9	9	3.5	0	9	3.5	9	9	9	9	0	9	3.5	3.5	9	9	9	3.5	3.5	9	3.5	3.5	9	9	9	3.5	3.5	0	3.5	3.5	9	3,5	9	9 4	9	. 6	9
PZC)	Entry PZC	Time (hours)	0.54	29'0	0.38	0.67	0.38	0.30	0.67	0,67	19'0	0.54	0.63	0.07	0.58	0.54	0.54	0.38	0.63	0.63	0.63	0.63	0.00	19.0	0.38	0.38	19'0	0.54	/9.0	0.38	0.38	0.67	0.38	0.38	0,63	0.63	0.54	0.38	0.38	0.63	0.38	0.38	0.63	0.38	0.67	0.67	0.67	29.0	19'0
Precautionary Zone Cruise (PZC)	Entry PZC	_		8	4.5	»,	4.5	; ∝	000	8	∞	6.5	7.5	∞ ,	6.5	5.9	6.5	4.5	7.5	7.5	7.5	7.5	6.5	8	4.5	4.5	8	6.5	3,4	4.5	4.5	8	4.5	4.5	7.5	7.5	6.5	4.5	4.5	C./	4.5	4.5	7.5	4.5	80	× •		8	8
tionary Zoo	Exit PZC	(Y/N)	¥	No	ટ્ટ :	×	* >	-	SZ.	No No	٨	δ.	λ;	*	- >	ž	*	Y	¥	*	γ:	> >	Z	×	¥	No	No	<u>۲</u>	0 >	, X	Y	> ;	<u>۶</u>	2	No	Y	ν	>	S P	×	2	¥	Š	Y	>	۶ >	~ >-	No	¥
Precau	Entry PZC	(Y/N)	٨	>	%;	× 5	2 2	2 2	>	>	Å	> ;	× ;	>- >	* >	· >	· >-	7	Υ	7	*	× >	. >	*	Ϋ́	¥	*	ę,	- >	· >-	No	ος;	x S	*	¥	γ	Y	>	*	* >	· >-	νς	×	No	× :	× 5	ξ. ×	¥	οχ
	Exit Cruise NOx	(tons)	0.39	0.62	0.35	74.0	0.39	0.54	0.31	0.58	0.31	0.31	0.42	0.31	0.19	0.28	0.15	0.31	1.17	1.07	1.05	0.33	0.34	0.35	0.03	0.33	0.49	0.49	0.68	96'0	1.21	16.0	80.0	59'0	99'0	0.72	0.36	0.77	0.42	0.48	0.52	0.51	0.85	1.28	0.61	1.38	0.73	1.35	1.39
	Entry Cruise	NOx (tons)	0.34	0.63	0.36	0.44	0.38	0.57	0,32	0.59	0.33	0.27	0.37	0.33	0.16	0.25	0.14	0.33	1.04	0.96	0.94	0.29	0.30	0.35	0.03	0.34	0.56	4.0	0.71	86.0	1.24	0.93	0.70	99'0	0.56	0.63	0.32	0.81	0.44	0.43	0.55	0.52	0.76	1.31	0.63	141	0.75	1.39	1.43
	Exit Cruise	NOx (lbs.)	780	1234	704	778	721	1076	619	1160	621	611	83/	670	377	562	310	621	2331	2142	2094	618	678	692	89	659	186	976	1355	1914	2412	1821	1667	1291	1295	1434	722	1537	847	1738	1047	1014	1702	2552	1229	00/7	1457	2704	2781
	Entry Cruise	NOx (lbs.)	089	1265	77/	798	759	1133	634	1190	654	532	/49	614	329	503	277	654	2086	1916	18/3	587	591	709	70	929	1123	873	1181	1963	2474	1307	1736	1324	1129	1250	646	1618	880	1787	1102	1040	1523	2617	1261	3045	1494	2773	2852
	Exit Cruise	NOx (g)	354071	560137	380000	353114	327450	488463	280809	526559	282131	277286	380009	265077	171088	255151	140645	281935	1058283	972321	950551	280498	307953	313965	30949	299217	445363	443010	615257	868817	1095023	1,66978	768379	586054	587840	651171	327752	697958	382214	788830	475399	460197	772615	1158437	558089	1347955	661439	1227431	1262496
Cruise	Entry Cruise	NOx (g)	308677	574499	400010	362168	344684	514172	288009	540061	296980	241736	340000	278976	149154	228293	125841	296773	946884	869971	850493	287690	268472	322016	31742	306890	509824	396377	536378	891095	1123100	261162	788030	601081	512476	567687	293252	734692	280307	809057	500420	471997	691287	1188141	572399	1382517	678399	1258903	1294868
J	()	(Jeg	1	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	12.81	12.81	12.81	17.32	17.32	17.32	17.92	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17,32	17.32	17.32	17.32	17.22	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32
	9	kWh	200.00	32340	21940	20388	18906	28202	16213	30402	16289	21040	16380	15302	13356	19918	62601	16278	61102	56139	23648	16195	17780	18127	1787	17276	25714	33171	35523	50163	63223	35573	44361	33837	33940	37596	18923	40298	76156	45544	27448	26570	44608	66884	32222	77876	38189	70868	72892
	Entry Cruise	kWh.	77971	331/0	23095	20910	19901	29687	16629	31181	17147	1995/	17747	16107	11644	17821	9824	17135	54670	50229	20616	16610	15501	18592	1833	17719	29436	36908	30969	51449	64844	26699	45498	34704	29589	32776	16931	42419	22400	46712	28893	27252	39913	68289	33048	79822	39169	72685	74761
٠		-+	2773	25102	29831	27719	25705	38344	22043	41335	22147	79831	22021	20805	18159	27081	14928	22132	83075	7777	32152	22019	24174	24646	2429	23489	34961	45100	48298	68202	85959	49502	60314	46005	46145	51117	25728	24790	34164	61923	37319	36125	05909	90937	43810	105814	51923	96353	90166
	Entry Cruise	hp-hr	45000	25746	31401	28430	27058	40362	22609	42395	23313	18976	23443	21900	15831	24230	13356	23297	74330	68293	28030	22584	21075	25278	2492	24091	40021	50304	42106	15669	88163	70000	61860	47185	40229	44563	23020	57673	30568	63511	39283	37052	54266	93269	100752	108528	53254	98824	101647
	~	Power	0000	9280	10480	8856	10656	13920	7800	12640	7600	10480	0968	8096	6472	12970	7150	10600	25578	255/0	13504	9248	9984	10495	1040	9920	13920	15120	24793	37568	53118	23200	29952	23616	23688	26240	11398	30834	16520	33680	18544	17280	33696	47608	22916	59595	26048	59535	59616
		ame	CE			NOSHIRO MARU	DA	PERICLES C.G.	SAGACIOUS NIKE	PORE ACE	PACPRINCE	DROTTANGER	KARINA BONTLA	GRUP	AMA	CHIQUITA FRANCES	U	TUNDRA KING	DAY	JUBILLE MAYING SEPENATIE	T SERVENADE	NA	CONIA	GREEN LAKE	HUAL CARMENCITA	RAY	r Tenacity	SAMITEL GINN	ULCO	ALLIGATOR BRAVERY	INGAPORE	RACE MACASA.	BROOKLYN BRIDGE	CALIFORNIA JUPITER	ORNIA SATURN	CHARLES	TINE MAERSK	DIBECTEACTE	DOLE ECHADOR	EMPRESS DRAGON	GLOWING	EVER GRADE	RACER	EVER UNION	GEORGE WASHINGTON BRIDGE	HANIN PARIS	HYUNDAI DYNASTY	HYUNDAI FREEDOM	IDAI INDEPENDENCE
		Ship Name	FABENCO	FIVE	MODI	NOSHII	OTRADA	PERICI	SAGAC	SINGA	PACPR	STAR	KARIN	STAR GRIP	VAIMAMA	CHIQU	MAGIC	TOND!	HOLDAY	TOBILE	AVAII	BELLONA	FRANC	GREEN	HUAL	OPAL 1	STOLI	SAMIT	ACAPULCO	ALLIG.	APL SI	RRICE	BROOK	CALIF	CALIF	CAPE	CHASI	CHEIC	DOLE	EMPRE	EVER (EVER (EVER 1	EVER	HANE	HAND	HYUNI	HYCN	HYCK

Table B-1Activity Data and NOx Marine Vessel Inventory for the August 3-7, 1997 Episode

NOx EMSFAC Cruise (g/kWh) or (fb/1000 gal)							
(g/kWh) or (lb/1000 gal)				Exit			
	Entry Cruise Exit Cruise Entry	Entry Cruise Exit Cruise NOx (lbs.)	Entry Cruise NOx (tons)	NOx Entry PZC (Y/N)	Exit PZC	Entry PZC Entry PZC Dist (nmiles) Time (hours)	Exit PZC Dist (nmiles)
17.32	787093	Н	08'0	-	T		
17,32	965927		0.93	1.06 Y			9
17.32	530580	-	09.0	\downarrow		1	9
17.32	954533	1		+			9
	361728 404284	797 890	0.40	0.45 No	Y 7.5	1	9
17.32	756385	-	0.30	-	Y 4.5	5 0.38	3.5
17.32	704555		0.80	_	Y 4.5	-	3.5
17.32	704555	_	08'0	0.78 No	Y 4		3.5
17.32	886989		08'0	_	Y 4.	4.5 0.38	3.5
17.32	849773		96'0		. Y 4.5		3.5
17.32	1740368	3932 3833	1.97			8 0.67	9
17.32	902439		1.02	$\frac{1}{1}$		1	9
12.81	206790	+	0.20	+			9
17.32	700771	1583 1544	0.79	+	×:	8 0.67	9
+	534342 612921	117/	65.0	+		-	0
17.32	202180	-	0.38	+		8 0.07	0
17.32	208063	+	0.24	+		+	9
17.32	612297	-	0.59	0.67 No	+		9
38005 17.52 6929	692900 698255	1526 1450	0.76	0.72 Y	02 2	8 0.67	٥
							-
	194688	335 429	0.17	0.21 Y	Y 6.		9
8.58	166261 212717	366 469	0.18	0,23 Y		6.5 0.54	9
				Exit			
Cruise Ems				Cruise		-	
ractors (Ib/	NO NO	NOx (lbs.) NOx (lbs.)	NOx (tons)	NOX (tons)			. •
55.8		ì	╁	V V V		8 0.67	9
55.8			60'0				9
55.8			0.10	0.10 Y	No		9 .
55.8			0.18	0.16 No		8 0.67	9
55.8		109 122	0.05	V 90.0		7.5 0.63	9
55.8		_	01.0	0.10 Y		4.5 0.38	3.5
. 55.8			80.0				3.5
. 55.8		-	60'0	V 60.0			3.5
55.8			0.08	0.13 Y		4.5 0.38	3.5
55.8		111 183	90'0	V 60.0	No	-	9
55.8			60.0	V 60.0	+	4,5 0,38	3.5

Table B-1

Activity Data and NOx Marine Vessel Inventory for the August 3-7, 1997 Episode

	, ,		T	Ŧ	T	Ŧ	Ŧ	Ŧ	T		Н		Ŧ	T	T	F	F	F	F			Ŧ	T	Ŧ	Ŧ	T	T	F		T	Ŧ	Ŧ	F	П	П	Ŧ	T	Ŧ	Ŧ	Ŧ	F	T	F	F	F	H	T	Ŧ	Ŧ	Ŧ
	C Exit PZ	(tons)	0.06	0.07	0.02	0.05	0.00	0.07	0.04	0.09	0.04	0.0	0.03	50.00	0 0	0.02	0.01	0.01	0.19	0.15	0.19	0.03	0.03	0.03	000	0.02	0.05	0.05	0.08	0.04	50.0	0.00	0.03	0.05	0.02	0.04	0.0	0.00	77.0	0 03	0.05	0.02	0.02	0.05	0.04	0.03	0.06	0.07	400	y0 0
	Entry PZC Exit PZC NOx NOx	(tons)	90.0	0.10	0.03	0.0	40.0	600	0.05	0.12	90.0	0.04	0.07	500	0 03	0.02	0.01	0.02	0.24	0.19	0.24	0.04	0.04	0.03	000	0.02	0.07	90.0	0.11	0.05	0.0	90.0	0.03	0.07	0.03	0.05	0.03	0.00	200	0.04	90.0	0.03	0.03	90.0	0.05	0.05	80.0	0.10	00.00	800
	Exit PZC	NOx (lbs.)	112	148	45	(0)	40 0	132	74	180	85	75	601	37	46	4	24	26	385	305	384	29	¥ 2	10 85	3	33	101	107	167	08	ñ %	89	54	106	4	26	2 5	5 8	43 43	89	16	4	40	93	84	70	117	146	3 =	120
	PZC NOx		122	161	28	0+1	52	176	66	241	123	81	/51	47	20	47	26	34	481	381	480	1	1/3	28	5 4	42	135	116	223	00 2	74	611	69	142	57	35	9 3	3 19	45	88	122	53	51	116	601	93	156	195	148	091
	Ox Entry		+	-	+	-	-				1	+	+	-						-	4	-	$\frac{1}{1}$	+	<u> </u>	-	_		4	+	-	-			-				+		-						-	+		-
	Exit PZC NOx Entry PZC NOx	(g)	20997	20501	1907	29668	18320	86665	33583	81932	38430	33990	28775	16693	20971	19890	10964	11963	174680	138265	174161	27926	24343	26533	1510	14981	46074	48456	75844	36234	26151	40411	24362	48281	20144	34638	27602	21642	19514	31087	41525	18778	18146	42098	38321	31703	53155	40769	50707	54492
	NOX EMSFAC Entry PZC NOX	(8)	15776	26467	20402	38145	23554	79997	44777	09243	51240	50823	38367	21462	22719	21548	11878	15381	18350	72831	217701	37457	16800	35378	1941	19262	61432	52494	101125	33444	33623	53881	31323	54375	25900	17063	10001	27876	25090	38859	55367	24143	23330	52622	49270	42270	70873	88322	57015	72656
(0)	AC Entry	(u)	-	+	-					1			$\frac{1}{1}$	-	-					-	1			+	-			+	+	+	\vdash	-		+	+	+	+	l	-	H						-		+		-
ruise (PZ	NO _X EMS	72C (g/K)	17 01	17.03	17.72	17.48	18.13	17.81	17.81	17.30	17.04	17.77	18.06	17.99	13.69	14.55	14.55	18.35	17.21	17.55	16.89	18 20	18 17	18,22	18.22	18.20	18.04	17.97	17.64	18.52	18.59	18.54	18.39	18.43	18.46	18.46	18.74	18.52	14.39	18.37	18.52	18.39	18.39	18.50	18.48	18.48	18.59	18.45	18.59	18.57
Precautionary Zone Cruise (PZC)	Exit PZC	2017	3770	1148	2799	1691	1010	3370	1886	4735	1013	2799	1594	928	1531	1367	754	652	10149	7877	10513	1337	1518	1456	83	823	2554	2697	4299	1405	1407	2180	1325	2620	1601	2078	1518	1169	1356	1692	2242	1021	286	2276	2073	1715	2859	2210	2704	2934
cautiona	Entry PZC	(1)	5026	92.	3732	2182	66:	.93	15	4 2	2077	1 6	25	93	59	81	91	38	286	40	121	83	45	14	27	58	95	77	25	98	60	07	03	93	63	8 8	45	03	43	15	06	13	69	44	99	87	12	2947	05	12
Pre		¥ 7	16	14	37	21				1	-	-	_			_	-	1	1	-	-	+	1	-		10	34	29	57	182	18	29	17	34	41 55	25	16	15	17	21	29	13	12	28	56	22	25	29	36	39
	Exit PZC	3966	5125	1560	3806	2307	1374	4581	2564	2061	2601	3806	2167	1262	2082	1859	1025	886	13798	10/03	2655	1818	2064	1980	113	1119	3472	3667	2670	1910	1913	2964	1801	3562	1483	2825	2064	1589	1843	2301	3049	1388	1341	3094	2819	2332	3888	3005	3676	3989
	Entry PZC	4297	6834	2006	5074	2967	1766	6108	3419	3040	2817	4757	2889	1622	2256	2014	0	1139	17248	17527	3319	2424	2236	2640	145	1439	4630	3972	1337	2455	2459	3952	2316	4750	3188	3532	2236	2043	2370	2876	4065	1785	1725	3867	3624	3110	6478	4007	4901	5319
	PZC Power	7932	10251	5350	7611	7911	4710	9163	5129	17071	5201	7611	4333	4326	4164	3718	2049	3038	2/597	28043	5310	3636	4129	3959	386	3836	6945	7333	5339	6548	6557	5928	6175	4717	5101	5651	4128	5448	6320	4601	8609	4760	4599	6188	9665	4664	2718	6010	7352	7979
	Actual HP	11100	19429	11600	13100	11070	13320	17400	97/50	9500	0056	13100	11200	10120	0608	16213	8937	13250	21067	27000	16880	11560	12480	13119	1300	12400	17400	19000	30991	46960	86599	45800	29000	20520	29610	32800	14248	38542	22799	20650	42100	23180	21600	42120	59510	28645	74494	32560	74419	74520
	PZC% MCR@ 4	╁	53	46	58	17	35	53	2 2	62	55	58	39	43	15	23	57 5	57	08	2 2	31	31	33	30	30	31	6 ;	44	17	14	10	13	21	2 2	17	17	29	14	28	22	4	21	21	15	16 1.	9 9	3 10	18	10	=
	PZC Speed Ratio		%99	28%	73%	%68	44%	%99	102%	78%	%89	73%	48%	23%	24%	%67	0/267	9/.67	0.070	30%	39%	36%	41%	38%	37%	39%	%00	92%	22%	17%	12%	%91	27%	220%	22%	22%	36%	%81	35%	%87	%81	%97	27%	18%	20%	20%	%91	23%	12%	13%
							+	+	-		-			-	+	+	-	-	-	+					-	+	-	+	-						+	-					+		1		1	1	+	H		-
	PZC 12 Kts/Design Speed			83%	%06	%96	76%	%/,8	101%	92%	88%	%06	78%	%18	%98	%00	0020	1039%	04%	109%	73%	73%	75%	72%	72%	73%	1976	%00	%09	26%	20%	54%	%4%	%09	%09	%09	71%	%95	70%	65%	57%	64%	64%	27%	2005	51%	55%	%19	%05	51%
	Exit PZC Time (hours)	0.50	0,50	0.29	0.50	0.29	0.29	05.0	0.50	0,50	05'0	0.50	0.50	0.29	0.50	0.50	0.30	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.29	0.29	05.0	0.50	0.50	0.29	0.29	0.50	0.29	0.20	0.50	0.50	0.50	0.29	0.29	0.50	0,50	0.29	0.29	0.50	67.0	0.50	0.50	0.50	0.50	0.50
																																													,,					
																														Y															GEORGE WASHINGTON BRIDGE	יייייייייייייייייייייייייייייייייייייי				ENCE
						ARU		NIKE	ACE		SS	TANGER	MITA		DANICES	NAME OF THE PERSON	25	2		ENADE				E	TENCITA	VERV	1 177	3		BRAVER	ORE	SK	REIDGE	LIUPITER	\ SATURA	LES	AAERSK		J.E	DOR	KAGUN	ING	Ξij,	داء	SHINGTO	DON	IS	YNASTY	REEDOM	DEPEND
	Ship Name	BEL ACE	FARENCO	5	MODI	NOSHIRO MARU	DIKADA	SAGACIOTIS MIKE	SINGAPORE ACE	PACPRINCE	PACPRINCESS	STAR DROTTANGER	KARINA BONITA	STAR GRIP	VAIMAMA	MAGIC	TIMDRA KING	HOLIDAY	JUBILEE	VIKING SERENADE	AYAII	BELLONA	FRANCONIA	EENLAK	AL CARA	STOLT TENACITY	NECTOR	SAMUEL GINN	APULCO	ALLIGATOR BRAVERY	APL SINGAPORE	AXEL MAERSK	BRISBANE STAR BROOKT VN BRINGE	LIFORNIA	CALIFORNIA SATURN	CAPE CHARLES	CHASTINE MAERSK	CHETUMAL	RECT EAC	DOLE ECUADOR	IFKESS D	EK GLOW	EVER GRADE	EVER INTON	ORGE WA	HANJIN LONDON	HANJIN PARIS	HYUNDAI DYNASTY	UNDA! FI	UNDALIF
	Shi	BE	ΕĀ	FIVI	ĭ	<u> </u>	5	1 2	S	PA	M	ST	<u>∑ </u>	IS.	> C	j ∑	E	일	E	5	AY	BE	띮	<u></u>	16	5 5	i k	S	Y _C	才	₹	2 8	R B	S	S	<u>ර</u>	핑	8		되	à	2 2	àlà	2 2	1 5	<u> </u>	Æ	Ě	Ħ	ĬΤ

Table B-1Activity Data and NOx Marine Vessel Inventory for the August 3-7, 1997 Episode

				1	_													_					_							1			_	工	_	_	_	7	_	T
	Exit PZC NOx	(tons)	10.0	0.04	0.05	0.04	0.02	0.02	0.02	0.02	50.0	0.19	0.05	0.02	90'0	0.04	0.03	0.02	0.04	90.0		0,02	0.03	-		-			0.02	10.0	0.00	1000	0.00	0.004	0.000	0.0031	0.0030	0.0030	0,0010	
	Entry PZC Exit PZC NOx NOx (toms)	(tons)	0.00	0.00	90.0	0.05	0.03	0.03	0.03	0.03	50.0	0.26	0.07	0.02	0.08	0.05	0.03	0.02	0.05	80.0		0,03	0.03						0,03	0.01	0.01	3 5	10.00	700.0	0.0040	0.0040	0.0038	0.0040	0.0020	
		(Sal) XOX	8 8	26	8	79	40	45	46	9 5	3 6	388	66	42	123	87	52	36	87	116		47	19						45	2 5	28	25	2 0	,		١	0 1	,	^	
	itry PZC NOx	(108.)	/11/	87	125	66	52	58	09	09	/2	517	132	46	164	94	69	48	94	155		51	19						09	707	505	20	10		7 6	×	×	2 <	‡	
	Exit PZC NOX Entry PZC NOX Exit PZC	(g)	10770	29557	42501	36009	18373	20321	21107	21107	30600	176127	44857	19145	55974	39522	23633	16254	39482	52654		21377	27883																	
	NOX B		-			_	3	7		+	1	25	6	0	2	2		2	7	9	-	6	9		-			1	+			+	+	\dagger	1	1	+	\dagger		+
	Entry PZC	(8)	75055	39410	89995	45011	23623	2612	27137	2713	1934	234835	5980	20740	7463	42815	31510	21672	42772	70206		2315	30206																	
ruise (PZC)	NOx EMSFAC Entry PZC NOx	rac (grkwn)	10.40	18.48	18.57	18.20	18.22	18.55	18.52	18.52	18.32	18.04	18.54	14.33	18.26	18.41	18.55	18.30	18.41	18.28		9.43	9.43						55.8	55.8	25.8	23.0	33.8	8,50	25.8	55.8	55.8	55.8	22.8	
Precautionary Zone Cruise (PZC)	Exit PZC	(KWn)	2103	1590	2288	1978	1008	1095	1140	1140	1767	9763	2420	1336	3065	2147	1274	888	2145	2881		2267	2957																	
Precaution	Entry PZC	(KWI)	7220	2132	3051	2473	1296	1408	1465	1465	2773	13017	3227	1447	4087	2326	1698	1184	2323	3841		2456	3203																	
	Exit PZC	np-nr	1767	2027	3111	2689	1371	1489	1550	1550	7/77	13274	3290	1816	4168	5919	1732	1208	2916	3916		3082	4020						807	266	338	7/0	107	60	871	112	107	87.	/2	
*	g S	np-ur	3903	2899	4149	3362	1763	1915	1992	1992	2000	17699	4387	1961	5557	3162	2309	1610	3159	5222		3339	4355						1076	355	450	390	175	SU2	165	44	138	115	//3	
	PZC Power	(dug)	2833	4340	6223	5379	4700	\$106	5313	5313	1/88	26548	6581	3632	8336	5838	3464	2416	5832	7833		6164	8040						1614	532	675	1345	573	240	440	384	367	257	196	
	Actual HP	Liyods	50503	27500	57677	17100	23690	43200	38070	38070	31479	66120	49589	11968	30150	29470	29501	9421	29440	29440		12500	12500			RFC @ Full (80%) Power	(gal/hr)	2093.4	1238.6	1128.1	47093.4	87.6	1238.6	1017.6	1604.9	1279.3	909.4	989.3	
	PZC % MCR @ /	17 NES	0 9	2 2	=	31	20	12	4	4 2	2 5	40	13	30	28	70	12	56	20	27		49	2						62	T	T	7 5	1		7	7	23	T	91	
	PZC Speed Ratio	Cubed	20%	20%	13%	39%	25%	15%	17%	17%	31%	\$0%	17%	38%	35%	25%	15%	32%	25%	33%		62%	80%				-		77%	43%	%09	04%	00%	44%	43%	24%	29%	28%	20%	
	PZC 12 Kts/Design	Speed	29%	589%	51%	73%	63%	53%	%95	26%	%80	76%	55%	72%	70%	63%	%85	%89	63%	%69		85%	93%						%76	75%	84%	86%	%/8	76%	76%	62%	%99	%99	28%	
	Exit PZC	Time (hours)	0.50	0.50	0.50	0.50	0.29	0.29	0.29	0.29	0.29	05.0	0.50	0.50	0.50	0.50	0.50	0.50	05.0	05.0		0.50	0.50						0.50	0.50	0.50	0.50	0.50	0.29	0.29	0.29	0.29	0.50	0.29	
		Ship Name	CULTENBURG	MAGLEBY MAEKSK	MARE CASTIOM MAREN MAERSK	MELBOURNE STAR	MING PLENTY	MOKIHANA	N O L RUBY	NOLZRCON	NEPTUNE JADE	NIN SEABREEZE	SEA-LAND CHARGER	SEA-LAND GUATEMALA	SEA-LAND PATRIOT	SOVCOMFLOT SENATOR	VLADIVOSTOK SENATOR	YURIY OSTROVSKIY	ZIM AMERICA	ZIM CANADA		CHRVBON COLOBADO	CHEVRON OREGON			•			ARCO INDEPENDENCE	ARCO PRUDHOE BAY	ARCO SAG RIVER	ARCO SPIRIT	BLUE RIDGE	FREDERICKSBURG	MARINE CHEMIST	EWA	KAUAI	SEA-LAND CHALLENGER	MATSONIA	

Table B-1

Activity Data and NOx Marine Vessel Inventory for the August 3-7, 1997 Episode

	-	+	Manyg Aux. Entry NOx All Cruise		-	-	S >	+	0.03 No			Y	+	-	73 Y	72 Y	Y	- >	72 X	7 Y		× ×	+	12 Y	22 Y	Α Α	7 ×	+	33 4		+	No No			+	No.		7 Y		× ×	-	oN IC		7	Y ×	-	
		-	Manvg Mau NOx N(\dashv	0.02	+	+	+		\dashv	+	+	╀	Н	+	+	+	+	Н	\dashv	+	+	-	Н	+	+	+	\vdash	Н	0.09 0.06	+	╀	H	+	+	H	+	+	+	╀		\mathbb{H}	+	+	-	000
			_	- 1	1	104	+	+	09		+	_	7 6	-	Н	+	+	+	\vdash	Н	+	+	+	\vdash	Н	+	+	+	+	H	130	+	+	H	+	+	Н	+	+	+	+	-	+	+	+	+	L
			Many Exit	N (lbs.) NO	+	115	+	19	93	130	42	78	71	-	28	+	+	+	-		129	+	+			+	+	+	Н		189	+	-	100	+	+	36	+	+	+	\vdash			+	+	206	-
			Manvg N		17435	47121	13599	14989	27054	34555	33005	32150	32159	23651	28309	18271	13227	13124	15775	32629	31530	22053	17696	18255	22313	1902	35514	13143	28931	17656	58857	28180	46260	24743	43726	34383	6494	8783	9180	14391	15319	12306	27590	17636	84879	93367	
		—	Manvg	-	+	+	╄-	-	42084		1		4	1	4	4	+	+	_	1	+	+	+	Н	\dashv		+	4	Н	-	85611	- -	-	-		+		+		╀	-		+	-	+	-	
		NOX	Manyg	(g/kWh)	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.4	18.41	18.41	18.41	14.41	14.79	14.79	18.5	18.5	18.5	14.79	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.59	18.59	18.59	18.59	18.59	18 59	18.59	18.59	18.59	18 50	18.59	18.59	18.59	18.59	18.59	18.59	18.59	
	Maneuvering	l	power	(kWh)	12.5	2560	739	814	1470	1877	1/93	1747	1747	1285	1538	766	894	887	853	1764	1300	1552	756	286	1206	103	1920	710	1564	950	3166	1516	2488	1331	2522	1850	349	472	1215	774	824	299	3098	2188	4566	5022	
	Man	Entry			T	2844	803	1493	2286	3199	1028	7011	1747	2569	989	1/3/	2832	871	975	2646	3174	2949	43	1469	1809	161	640	1452	1564	9118	3581	2246	2666	2432	3811	2252	873	1654	1519	2271	1705	1456	2582	1650	6118	5022	-
		Exit	power	hp-hr	10025	3480	1004	1107	8661	2552	2050	2375	2375	1747	2091	674	1216	1206	1159	2398	1800	2110	1301	1342	1640	1205	2610	996	2126	1291	3099	2061	3383	1810	2468	2515	475	642	1652	1053	1120	900	4212	1280	6208	6829	
		Entry	power	hp-hr	1360	3867	1092	2030	3108	4350	1580	950	23.75	3493	933	1348	3851	1184	1325	3597	4050	4009	58	1997	2460	2170	870	1974	2126	12396	4869	3053	3625	3307	5182	3116	1187	1520	2065	3087	2318	1980	3510	2244	8318	6859	,000
		Manyo	Power	(dua)	3886	2320	2620	2214	2664	3480	3160	1900	0061	2620	2240	1618	2432	1341	1988	4796	4050	2532	1734	1872	1968	1860	3480	2520	2835	3099	6640	4580	2900	3744	2961	3280	1425	2380	2065	4210	2318	2160	4212	2865	7449	7449	
		% MCR @	5 kts	Manyg	20	20	20	20	500	3 8	200	202	20	20	200	2 2	15	15	15	2 2	2 5	15	15	15	15	15	202	15	15	2 2	2 2	10	10	2 2	2 02	10	2	2 2	2 2	10	10	2	0 2	2 2	10	10	•
				11100	19429	11600	13100	11070	13320	004/1	15800	9500	9500	13100	10120	8090	16213	8937	13250	31973	27000	16880	11560	12480	13119	12400	17400	16799	18900	30991	40300	45800	29000	37440	29610	32800	14248	28247	20650	42100	23180	21600	42120	28645	74494	74494	
		(Hrs at port-	Mane)	3.51	T	119.98			13.50	T	T	T			42.48					T	9.62	Τ	18.97	7	1	97.98	Τ	П	23.90	1	75.20		10.15	T	Τ	2.40		20.30	T		\exists	1	17.98		Π	13.00	2
-		Exit	Many	T	2.58	1.50	0.38	0.50	0.75	1,75	125	1.25	1.25 ·	0.67	56.0	0.42	0.50	0.90	0.58	0.50	0.47	0.83	0.75	0.72	0.83	0.75	0.75	0.38	0.75	0.42	0.47	0.45	1.17	0.48	0.83	0.77	0.33	0.17	080	0.25	0.48	0.42	0.50	0.45	0.83	0.92	
	vering	Entry	Manyg	0.33	0.35	1.67	0.42	0.92	1.17	22.0	0.50	0.50	1.25	1.33	1 17	0.83	1.58	0.88	0.67	c/.0	1.00	1.58	0.03	1.07	27	117	0.25	0.78	0.75	1 33	0.73	29'0	1.25	0.88	1.75	0.95	0.83	0.50	1.00	0.73	1.00	0.92	1.08	0.78	1.12	0.92	900
	Maneuvering	Exit	Manyg	\ \ \	δÑ	γ	Y	>	>	. 5	2	¥	No	> ;	* >	7	No	×	>	× >	\ \ \	¥	×	ટ્ટ ;	* >	· &	No	Y	ς,	× >	· >	¥	ટ્ટ	× ½	S. S.	Y	ટ્ટ >	, S	>	¥	ટ	>	ος >	\ \	No	>	>
		Entry	Manyg	λ	¥	νο	٨	£ ;	S S	>	\ \	¥	٨	۲,	* >	>-	Y	۲	X	-	×	Ϋ́	>	>-	× >	· >-	Y	No	>	× >	No	ν	Α,	ဍိ >	Ÿ	No	>	A	¥	Ϋ́	Å.	8	2	*	Y	°N:	>
			Sur	BEL ACE	FARENCO	FIVI	MODI	NOSHIRO MARU	OTKADA PERICI ES C G	SAGACIOUS NIKE	SINGAPORE ACE	PACPRINCE	PACPRINCESS	STAR DROITANGER	STAR GRIP	VAIMAMA	CHIQUITA FRANCES	MAGIC	IUNDKA KING	TUBILEE	VIKING SÈRENADE	AYA II	BELLONA	FRANCONIA	HUAL CARMENCITA	OPAL RAY	STOLT TENACITY	BT NESTOR	SAMUEL GINN	ALLIGATOR BRAVERY	APL SINGAPORE	AXEL MAERSK	BRISBANE STAR	CALIFORNIA JUPITER	CALIFORNIA SATURN	CAPE CHARLES	CHASTINE MAERSK	DIRECT EAGLE	DOLE ECUADOR	EMPRESS DRAGON	EVER GLOWING	EVER OXADE	EVER UNION	GEORGE WASHINGTON BRIDGE	HANJIN LONDON	HANJIN PARIS	I I CAN LO LA CALLO L

Table B-1Activity Data and NOx Marine Vessel Inventory for the August 3-7, 1997 Episode

	:	Maneuvering	ering,								Man	Maneuvering								
									-		Entry		ŎN					Entry	Exit	
	Entry	Exit	Entry	Exit	(Hrs at port-		% MCR @		Manvg			Exit Manyg	EMSFAC	Entry	Exit	Entry	Exit	Manvg	Manvg	Aux. Entry
Ship Name	S (N/X)	CX/IN)	(hrs)		Mane) Hotelling (hrs)	Llyods	5 Kts Manvg	Power (bhp)		power hp-hr (power (kWh)	power (kWh)	Manvg (g/kWh)	Manvg NOx (g)	Manvg NOx (g)	Many Many NOx (lbs.)	Manvg VOx (lbs.)	NOX (fons)		All Cruise
LUTJENBURG	No	Y	0.67		6.50	36353	10	3635	\vdash	_	1783	899	18.59	33137	12426	73	27	0.04	0.01	S,
MAGLEBY MAERSK	>	>	0.58	0.33	21.67	57677	2	5768	3364	\dashv	2475	1414	18.59	46003	26287	101	58	0.05	0.03	۲
MARE CASPIUM	> :	> :	0.75	0.73	37.43	27500	2	2750	\dashv	+	1517	1483	18.59	28200	27574	62	61	0.03	0.03	¥
MAREN MAERSK	> ;	∤	0.73	0.38	13.30	57677	2 3	5768	+	\dashv	3111	1626	18.59	57832	30230	127	- 62	90'0	0.03	Y
MELBOURNE STAR	δ 2	>	0.83	0.83	42.08	17100	0 9	1710	+	+	6901	1048	18.59	19874	19484	4	43	0.02	0.02	Š
MOKIHANA	- X-	- >-	0.75	0.72	38.62	43200	2 02	4320	3240	3096	2383	7277	18 59	35090	32391	1.00	17	40.0	0.04	>
NOLRUBY	%	×	0.92	06.0	41.10	38070	10	3807	-	╀	2567	2520	18,59	47715	46848	105	103	0.00	0.05	Z
N O L ZIRCON	No	Υ	0.95	0.95	74.72	38070	10	3807	-	-	2660	2660	18.59	49450	49450	109	109	0.05	500	2
NEPTUNE JADE	X	¥	1.08	0.62	10.80	31479	10	3148			2508	1428	18.59	46628	26542	103	58	0.05	0.03	>
NYK SEABREEZE	Š	7	1.10	0.92	19.25	40500	10	4050	\dashv		3277	2731	18.59	60913	50761	134	112	0.07	90.0	Š
OOCL AMERICA	ž;	× ;	0.67	0.70	76.80	66120	2	6612	-	4628	3242	3404	18.59	60270	63284	133	139	0.07	0.07	ν
SEA-LAND CHARGER	۶ ۶	<u> </u>	0.62	0.42	26.00	49589	2	4959	-	+	2249	1520	18.59	41812	28251	35	62	0.05	0.03	å
SEA-LAND GUATEMALA	X);	× ;	6.53	0.38	15.32	11968	2	1197	658	+	484	337	14.94	7233	5041	91	=	0.01	0.01	>
SEA-LAND PATRIOT	× :	× :	0.85	2.25	55.82	30150	2	3015	2563	+	1885	4989	18.59	35040	92754	77	204	0.04	0.10	٠
SOVCOMFLOT SENATOR	>	<u>- </u> :	0.67	0.42	28.92	29470	2	2947	1965	+	1445	903	18.59	26863	16789	59	37	0.03	0.02	٨
VLADIVOSTOR SENATOR	Y.	Y	09'0	0.50	33.65	29501	2	2950	1770	1475	1302	1085	18.59	24202	20168	53	4	0.03	0.02	Υ.
YURIY OSTROVSKIY	ŝ,	> -	0.67	0.47	1.53	9421	2	942	829	440	462	323	18.59	8288	6011	61	13	0.01	0.01	No
ZIM AMERICA	δ.	× ;	0.82	0.72	17.37	29440	2	2944	2404	2110	1768	1552	18.59	32873	28848	72	2	0.04	0.03	ν°
ZIM CANADA	7	S S	0.57	0.55	7.17	29440	2	2944	1668	1619	1227	1191	18.59	22810	22139	20	49	0.03	0.02	>
											1									-
CHEVRON COLORADO	Y	Y	1.03	0.75	35.30	12500	15	1875	+	1406	1425	1034	18.5	26363	19134	58	42	0.03	0.02	*
CHEVRON OREGON	Y	Ϋ́	0.75	0.75	0.17	12500	15	1875	1406	1406	1034	1034	18.5	19134	19134	42	42	0.02	0.02	Å
						1	1		1			+		1						
						RFC @		RFC @										Entry	Exit	
						Full (80%		_	Entry	Exit		_	Cruise Ems			Entry		Manvg	Manvg	
) Power (gal/hr)		Manvg M (gal/hr)	Manvg FC Manvg FC (gals) (gals)	anvg FC (gals)			Factors (lb/ 1000gal)		<i>F</i> -4			PZC NOx (tons)	NOx (tons)	
ARCO INDEPENDENCE	Y	No	1.05	0.75	23.43	2093.4		392.5125	412	294			55.8			23	16	0.01	0.01	×
ARCO PRUDHOE BAY	No	٨	0.75	0.75	43.83	1238.6	15	232.2375	174	174			55.8			10	10	00.0	00.0	No
ARCO SAG RIVER	*	å	1.40	09.0	47.60	1128.1		211.5188	596	127			55.8			1.1	7	0.01	00'0	¥
ARCO SPIRIT	ν̈́	>	1.55	0.75	17.25	2093.4		392.5125	809	294			55.8			34	16	0.02	10.0	Š
BLUE RIDGE	Y	°N	1.00	0.75	57.23	793.8		148.8375	149	112			55.8			8	9	0.00	00.0	Ϋ́
FREDERICKSBURG	λ	λ	1.00	0.75	47.33	1238.6		232,2375	232	174			55.8			13	10	0.01	00.0	۲
MARINE CHEMIST	¥	°N	0.38	0.75	22.10	1017.6		190.8	73	143			55.8			4	∞	00.0	00'0	¥
EWA	>	X	1.25	1.25	17.75	1604.9		200.6125	251	251			55.8			14	14	10'0	0.01	۲
KAUAI	>	>	0.1	96'0	57.80	1279.3	01	159.9125	160	152			55.8			6	8	0.00	00'0	Y
SEA-LAND CHALLENGER	>	ž	0.47	09.0	17.35	909.4	1	113.675	53	89			55.8			3	4	0.00	00.0	٨
MATSONIA	A	S.	1.50	1.18	30.98	989.3	1	123.6625	185	146			55.8		+	02	8	0.01	0.00	X
			T	T			†	\dagger		+	+				T	T	1	3.5	,0	
						1		-		-	1				1	1		7:0	4.7	

Table B-1

Activity Data and NOx Marine Vessel Inventory for the August 3-7, 1997 Episode

Auxiliary Boiler All Cruise
Aux. Exit Enuy All Exit All All Cruise Entry All Exit All All Cruise Cruise Time Cruise (1b/hr) Cruise NOx Cru
Time (hrs) (lbs.)
2.7
3.00 2.7
2.7
-
3.25 2.7
3.33 2.7
3.77 2.7
3.41 2.7
3.04 3.30 2.7 8.20
2.99 2.7
2.86 2.7
3.31
2.59 2.7
2.59
2.7
3.75 2.7
3.49
2.7
2.88 2.7
2.92 2.7
2.7
2.63
3.54 3.01 2.7 9.55
3.09 2.7
3.48 2.7
2.7
2.11
+
2.38 2.7
2.51 2.7
2,24 2,7
2.45 2.7
2.32 2.45 2.7 6.27
2.76 2.7
2.7
2.34
234 27
2.7
+
+
2.30 2.7
2.20 2.7
2.41 2.7
2.15 2.7
2.49 2.28 2.7 6.72
2 17
+
2.10

 Table B-1

 Activity Data and NOx Marine Vessel Inventory for the August 3-7, 1997 Episode

	Aux	Auxiliary Boiler All Cruise	er All Cr	uise		Auxiliary	Auxiliary Boiler All Cruise		Auxiliary Boiler-Hotelling & Manvg	Boiler-H	otelling &	. Manvg			Generators	tors			
	Aux. Exit	Entry All	Exit All	EMSFAC All Cruise (1b/hr)	Entry All	Exit All	Entry All Cruise NOx	Exit All	Aug 3-7th	EMSFAC Hotelling	Hotelling+	Hotelling+	Entry Cruise NOx	Exit Cruise B	Entry PZC	Exit PZC	Entry Manvg NOx	Exit Manvg NOx Cr	Entry Cruise NOx
Ship Name	(X/X)		Time (hrs)		(lbs.)					(lb/hour)		NOx (tons)	(tons)	(tons)				-	(tons)
LUTJENBURG	>	2.62	2.62	2.7	7.07	7.09	0.004	0.004	8.9	2.7	18	600.0	0.024	0.026	0.008	-	0.008	-	
MAGLEBY MAERSK	Y	1.97	2.14	2.7	5.33	5.79	0.003	0.003	22.6	2.7	19	0.030	0.063	0.072	0.024	+	0.026	+	0.063
MARE CASPIUM	> :	2.61	2.39	2.7	7.04	6.46	0.004	0.003	38.9	2.7	105	0.053	0.023	0.022	0.008	+	0.009	0.009	0.023
MAREN MAERSK	, ,	2.38	71.7	2.7	7.30	2,75	0.00	0.000	47.4	2.7	116	0.058	0.077	0.042	0.011	0.000	0.015	0.015	2000
MELBOURNE STAR	* >	2.47	233	2.7	67.7	6.30	0.003	0.003	65.7	2.7	122	6800	0.024	0.023	0.004	╁	0.012	0.011	0.024
MING FLENT X	- >	2.14	2.01	2.7	5.77	5.43	0.003	0.003	40.1	2.7	108	0.054	0.050	0.048	0.011	-	0.021	0.020	0.050
NOT. BIBY	Y	2.24	2.11	2.7	6.04	5.69	0.003	0.003	42.0	2.7	113	0.057	0.023	0.023	0.005		0.011	0.011	
NOLZECON	¥	2.24	2.11	2.7	6.04	5.69	0.003	0.003	75.7	2.7	204	0.102	0.023	0.023	0.005		0.012	0.012	
NEPTUNE JADE	Y	2.63	2.43	2.7	7.10	6.57	0.004	0.003	12.5	2.7	34	0.017	-0.025	0.024	0.004	\dashv	0,012	0.007	0.025
NYK SEABREEZE	Y	2.49	2.35	2.7	6.71	6.35	0.003	0.003	20.2	2.7	\$2	0.027	0.036	0.035	900'0		0.019	0.016	
OOCL AMERICA	Y	3.32	3.08	2.7	8.95	8.32	0.004	0.004	77.5	2.7	209	0.105	0.063	0.061	0.016	0.012	0.016	0.017	
SEA-LAND CHARGER	Ā	2,50	2.29	2.7	6.75	6.17	0.003	0.003	26.4	2.7	11	0.036	0.045	0.044	0.017	+	0.015	0.010	
SEA-LAND GUATEMALA	¥	2.59	2.79	2.7	7.00	7.54	0.004	0.004	16.3	2.7	4	0.022	0.032	0.036	800'0	+	600.0	900'0	0.032
SEA-LAND PATRIOT	Y	3.01	2.78	2.7	8.12	7.51	0.004	0.004	58.9	2.7	159	0.080	0.034	0.033	0.010	+	0.012	0.033	0.034
SOVCOMFLOT SENATOR	Y	2.32	2.54	2.7	6.27	98.9	0.003	0.003	30.0	2.7	81	0.041	0.024	0.028	0.007	+	0.009	0.006	0.024
VLADIVOSTOK SENATOR	>	2.42	2.17	2.7	6.55	5.86	0.003	0.003	34.8	2.7	8	0.047	0.024	0.023	6000	+	0.008	0.007	0.024
YURIY OSTROVSKIY	¥	2.95	2.67	2.7	7.96	7.20	0.004	0.004	2.0	2.7	5	0.003	0.026	0.024	800.0	+	800.0	0.005	
ZIM AMERICA	¥	2.32	2.54	2.7	6.27	98'9	0.003	0.003	18.1	2.7	49	0.024	0.025	0.029	800.0	\dashv	0.011	0.010	
ZIM CANADA	å	2.98	2.69	2.7	8.04	7.27	0.004	0.004	7.7	2.7	21	0.010	0.032	0.031	0.00	0.007	0.008	800.0	0.032
									0.0										
									0.0							+			
CHEVRON COLORADO	Y	2.95	3.59	2.7	7.97	89.6	0.004	0.005	37.1	2.7	100	0.050	0.060	0.077	0.013	0.012	0.026	0.019	0.060
CHEVRON OREGON	¥	3.18	3.87	2.7	8.58	10.45	0.004	0.005	1.7	2.7	5	0.002	0.065	0.084	0.013	+	0.019	0.019	0,065
										Hotelling									
				EMSFAC						Ems	RFC @								
		Entry All	Exit All	All Cruise		Exit All	Entry All	Exit All		Factors	40% power								
		Cruise Time	Cruise	(1b/hr)	ĕ	Cruise NOx		Cruise NOx		(lp/	Hotelling								
		(hrs)	Time (hrs)		(lbs.)	(Ips.)	(tons)	(tons)		inondari	(gal/nt)	0.446							
ARCO INDEPENDENCE	ος ;							+	4.62	36.4	619	0.494							
ARCO FRODROE BAI	1 12								47.6	36.4	564	0.489							-
ARCO SAG KLYER	ONT >								17.3	36.4	1047	0.329							
PATTE BENCE	2								57.2	36,4	397	0.413							
BLUE MUSE	>								47.3	36.4	619	0.534							
FREDERICKSBONG	Y V								22.1	36.4	509	0.205							
MAKINE CREMISI	2								17.8	36.4	802	0.259							
DWA	•								57.8	36.4	640	0.673							
SEALT AND CHAIT FNGER	, ç								17.3	36.4	455	0.144							
MATSONIA	2								31.0	36.4	495	0.279						+	
																		-	
								\exists				7.542	2.3	2.4	9.0	0.5	1.0	0.8	-

Table B-1

Activity Data and NOx Marine Vessel Inventory for the August 3-7, 1997 Episode

All	NOx (tons) for 8/3 thru	8/7	0.1	5.00	0.0	0	0.5	8.0	6.0	1:1	1.0	9.0	0.1	80	0.7	0.7	0.7	0.9	3.3	3.0	6.0	1.0	0.4	=	0.3	6.0		3	2.0	2.8	3.0	6.3	4.1	1.0	8.0	6.0.	2.2	8.0	1.5	2.6	0.7	0.0	2.1	2.1	1.7	2.0	1.8	2.0
Generators	Generators For all	modes	0.058	0.395	0.088	0.389	0.085	0,088	0.353	0.274	0.145	0.176	0.192	0,112	0.214	0.325	0.301	0.154	0.554	0.493	0.082	0.232	0.045	0.223	0.160	0,340	0.200	0.225	0.402	0.582	1.613	0.284	0.444	0.188	0.115	0.002	0.482	0.295	0.432	0.597	0.070	0.248	0.694	0,657	960.0	0.591	0.121	0.280
57	Hotelling+ Manvg	NOx (tons)	0.000	0.162	0.016	0,121	0.019	0.026	0.109	0.063	0.029	0.040	0.059	0.011	0.027	0.027	0.029	0.017	0.016	0.015	0.012	0.027	0.004	0.026	0.124	0.134	0.037	0.033	0.051	0.059	0.102	0.027	0.056	0.026	0.014	0.069	0.050	0.055	0.042	990.0	0.009	0.025	090'0	0.095	0.002	0.061	900'0	0.021
Auxiliary Boilers	Exit All Cruise NOx	(tons)	con'o		0.005	0.005	0.004	0.004			0.005	0.005	0,004	0,004	0.004		0.003	0.003	0.005	0.005	0.004	0.004		0.004	0.004		0,004		0.003	0.003	0.003	0.003	0.003		0 003	Conco	0.003		0.003	0.003	0 003	000.0	0.003	0.003	.000	0.003		0.003
Auxil	= 8	(tons)	500.0	200.0	0.005				0.005	0.005	0.002	0.004	0.004	0.004	0.004	0.003	0.003	0.003	0.003	0.005	0.004	0.004	0.004	0.004	0.004	0.005		0.005	0.003	0.003		0 003		0.003	0,003	0.003	0.003	0.004	0.003	0.003	0.003	0,003		0.004	0.003	0.004	0.003	
	Exit Many	NOx (tons)	200		0.015	0.017	0.030	0.038		2000	0.035	0.026	0.031	0.020	0.008		0.014	710.0	0.036	0.028	0.025	0.019		0.025	700.0		0.014		0.019	0.065	0.047	100.0	0.027		0.038	25	0.010		0.025	0.016	0.014	100	0.045	0.019	101.0	0.047		0.262
	Entry Many NOx	(tons)	0 0 0 0		910'0				0.021	0.024	0.014	0.052	0.014	0.035	0.016	0.046	0.014	0.020	0.065	0.061	0.048	0.001	0.030	0.037	0.033	0,013		0,032	0.187	0.094		0.055		0.044	0.070	0.018	0.034	0.018	0.031	0.046	0.030	0.053		0.034	0.125	0.047	0.187	
ngines	Exit PZC	0 056			0.055	0.033	0.020	990'0		0,000	0.042	0.055	0.032	0.018	0.023	6,6	0.012	0.010	0.152	0.192	0.031	0.027	0000	0.000	700.0		0.053		0.040	0.029	0.029	Cho's	0.053		0.042		0.024		0.034	0.046	0000		0.042	0.035	0.073	0.045		0.060
Main Engines		0.061	Τ		0.073				0.049	0.120	0.030	0.068	0.042	0.024	0.025	0.024	0.013	0.017	0.190	0.240	0.038	0.036	0.033	0.000	0.021	890.0		0.111	0.050	0.037		0.034		0.029	0,00	0.033	0.031	0.028	0.043	0.001	0.027	0.058		0.047	0.078	090'0	0.074	
	Exit Cruise	0 390			0.419	0.389	0.361	0.538		0 211	116.0	0.419	0.312	0.292	0.188	25.0	0.155	1166	1.071	1.047	0,334	0.309	0346	0.340			0.488		829.0	0.957	1.206		0.846		0.717		0.769		0.479	0.809	0 507		1,276	0.615	1 485	0.728		1.390
	Entry Cruise Exit Cruise	0,340	0.633		0.441				0.317	0.327	0,266	0.374	0.329	0.307	0.164	0.251	0.139	1 043	0.958	0.937	0.291	0.317	0.296	0.035	0.338	0.561		0.706	0.591	0.981		869.0		0.662		0.323	608'0	0.443	0.429	0.651		0.761		0.630	1.414	0.747	1,386	
ators	Generator NOv (1996)	0.058	0.445	0.395	0.088	0.389	0.085	0.088	0.353	0.145	0.176	0.289	0.192	0.112	0.214	0.325	0.54	0.554	0.495	0.403	0.082	0.232	0.045	0 160	0.340	0,401	0.200	0.225	0.402	0.582	0.284	0.121	0.444	0.188	0,062	0.562	0.482	0.295	0.432	0.070	0.187	0.248	0.694	0.657	0.326	0.591	0.121	0.280
Generators	Hotelling	0.014	0.423	0.395	0.044	0.367	0.063	0.068	0.329	0.090	0.150	0.222	0.154	0.042	0.138	162.0	0.000	0.265	0.219	0.175	0:030	0.156	0.013	0.086	0.322	0.365	0.170	0.177	0.292	0.478	0.238	080'0	0.404	0.150	0.022	0.515	0.405	.0.265	0.526	0.038	0.165	0.201	0.640	0.584	0.000	0.483	0.041	0.190
	Entry Exit Manyg Manyg NOx (tons) NOx (tons)	0.003			0.002	0.003	0.005	0.004		0 008		0.005	0.005	900'0	0.004	0.013	0.006	0.017	910.0	0.012	0.005	0.008	0000	0.007			0.003		0.005	0.014	0.008		0.007		0.010		0.003		0.012	0.00	0.003		0.010	0.005	0 024	0.014	2700	0.047
			0.002		0.002			100	0.004	0.003	0.008	0.011	0.002	0.011	0.008	0.029	0.007	0.025	0.030	0.025	0.010	0000	0,009	0.013	0.005	0,002		0.008	0.048	0.021		0,014		0.011		0.012	0.009	900.0	0.015	0000		0.013		0.009	0.023	0.014	0.033	
Generators	Exit PZC				0.003	0.002	0.002	0.002		0.003		0.004	0.002	0,003	0.005	0 00 0	0 003	0.017	0,017	0.012	0.003	0.000	0000	0,003			0.004		0.006	0000	0.00		0.007		0.006		0.004	800	0.000		0.002		0.006	900'0	0.013	0.008	950	212.2
Gen	e Entry PZC	0.003	0.004		0.004			7000	0.00	0.00	0.003	0.005	0.003	0.003	0.000	0000	0.00	0.021	0.021	0.016	0.004	800.0	0.000	0.004	0.002	900'0		0.007	0.007	0000		0,004	,	0.004		0.008	90.00	0.003	000	0.003		0.010		0.008	10.0	0.010	0.013	
	Exit Cruise NOx (tons)	0.018			0.016	0.018	0.016	0.014		0.018		0.022	0.012	0.023	0.029	0.030	0.022	0.110	0.101	0.086	0.016	0.027	0.025	0.023			0.022		0.023	0.029	0,030		0.027		0.024		0.027	460	0.032		0.017		0.038	0.022	0.046	0.030	0.023	0,000
	Ship Name	BEL ACE	FARENCO	FIVI	MODI	MUSHIKU MAKU	DIRADA	SAGACIOTIS NIKE	SINGAPORE ACE	PACPRINCE	PACPRINCESS	STAR DROTTANGER	KARINA BONITA	STAR GRIP	VALIMAMIA CHIOLITTA ED ANCES	MAGIC	TUNDRA KING	HOLDAY	лвиле	VIKING SERENADE	AYA II BELI OMA	FR ANCONTA	GREENLAKE	HUAL CARMENCITA	OPAL RAY	STOLT TENACITY	BT NESTOR	SAMUEL GINN	ACAPULCO	ALLICATOR BRAVERT	AXEL MAERSK	BRISBANE STAR	BROOKLYN BRIDGE	CALIFORNIA SATURN	CAPE CHARLES	CHASTINE MAERSK	CHETUMAL	DIRECT EAGLE	EMPRESS DRAGON	EVER GLOWING	EVER GRADE	EVER RACER	EVER UNION	HANJIN LONDON	HANJIN PARIS	HYUNDAI DYNASTY	HYUNDAI FREEDOM	יייייייייייייייייייייייייייייייייייייי

Table B-1Activity Data and NOx Marine Vessel Inventory for the August 3-7, 1997 Episode

Control Bany PC Cuite Eart Cuite Bany Activate Eart All Annual Most (cons) Eart All Annual Most (cons) Eart All Annual Most (cons) Count NOA (cons) Count
NAME (1881) CAST (1881)
0.527 1.054 0.0493 0.0494 0.0454 0.0541 0.0529 0.0030 0.0303 0.0303 0.0592 1.107 1.107 1.651 0.0493 0.0491 0.0531 0.0531 0.0533 0.0533 0.0532 0.0533 0.0533 0.0533 0.0533 0.0533 0.0533 0.0533 0.0533 0.0533 0.0533 0.0533 0.0534 0.0533 0.0534 0.0533 0.0534 0.0533 0.0534 0.0533 0.0534
0.559 0.584 0.043 0.0431 0.0431 0.0530 0.0044 0.0033 0.0033 0.0539 0.0549 0.0549 0.0544 0.0044 0.0033 0.0033 0.0549 0.0540 0.0544 0.0034 0.0034 0.0034 0.0549 0.0540 0.0034 0.0034 0.0549 0.0540 0.0034 0.0034 0.0549 0.0540 0.0034 0.0034 0.0549 0.0549 0.0034 0.0034 0.0549 0.0034 0.00
1.107 1.051 0.0621 0.0647 0.0543 0.0033 0.0019 0.0574 0.0574 0.0574 0.0281 0.0574 0.0281 0.0292 0.0251 0.0251 0.0252 0.0492 0.0252 0.0252 0.0492 0.0252 0.0
0.5577 0.5445 0.0266 0.0290 0.0395 0.0251 0.0044 0.0558 0.0550 0.055
0.554 0.0253 0.0293 0.0494 0.0493 0.0494 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493 0.0494 0.0493 0.0494 0.0493 0.0494 0.0494 </td
0.754 0.023 0.057 0.053 0.057 0.053 0.054 0.053 0.054 0.053 0.054 0.053 0.054 0.053 0.054 0.053 0.054 0.053 0.054 0.053 0.054 0.053 0.054 0.053 0.014 0.054 0.054 0.050 0.017 0.154 0.054 0.054 0.003 0.017 0.051 0.054 0.004 0.003 0.017 0.051 0.054 0.004 0.003 0.017 0.053 0.044 0.003 0.017 0.053 0.044 0.003 0.017 0.053 0.044 0.003 0.017 0.053 0.044 0.003 0.014 0.027 0.024 0.004 0.003 0.024 0.024 0.003 0.004 0.003 0.024 0.024 0.003 0.004 0.003 0.024 0.003 0.004 0.003 0.024 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 <th< td=""></th<>
0.776 0.023 0.054 0.029 0.004 0.0102 0.114 0.776 0.577 0.034 0.051 0.029 0.004 0.003 0.017 0.165 0.576 0.575 0.034 0.034 0.035 0.040 0.003 0.077 0.165 0.524 0.594 0.021 0.020 0.021 0.003 0.011 0.003 0.017 0.165 0.5284 0.228 0.022 0.021 0.029 0.021 0.004 0.003 0.174 0.582 0.675 0.022 0.039 0.102 0.004 0.003 0.124 0.582 0.675 0.024 0.023 0.018 0.003 0.010 0.021 0.582 0.675 0.024 0.027 0.023 0.003 0.014 0.023 0.763 0.024 0.027 0.027 0.027 0.027 0.023 0.024 0.027 0.763 0.027 0.028 0.027
0.7956 0.7571 0.0434 0.0534 0.0534 0.0536 0.0036 0.0037 0.0137 0.1584 1 1.917 0.1946 0.0796 0.056 0.003 0.027 0.233 0 0.034 0.194 0.079 0.0194 0.079 0.0194 0.079 0.021 0.003 0.0194 0.003 0.018 0.003 0.004
0.0556 0.0556 0.0556 0.0556 0.0556 0.0557 0
1.917 0.194 0.070 0.004 0.105 0.1164 0.001 0.001 0.105 0.1165
0.2044 0.0494 0.0494 0.049 0.031 0.003 0.035 0.035 0.037 0.2044 0.2044 0.0234 0.0224 0.0262 0.0294 0.0043 0.0043 0.0043 0.0043 0.0274 0.0274 0.0274 0.0274 0.0040 0.0040 0.0040 0.0040 0.0040 0.0074 0.0040 0.0074
0.264 0.228 0.023 0.021 0.004 0.004 0.022 0.274 0.782 0.772 0.082 0.062 0.003 0.004 0.004 0.030 0.0177 0.582 0.673 0.043 0.018 0.003 0.003 0.044 0.030 0.044 0.030 0.044 0.030 0.044 0.030 0.044 0.030 0.044 0.030 0.044 0.030 0.044 0.030 0.044 0.030 0.044 0.030 0.044 0.030 0.044 0.049 0.044 0.049 0.044 0.049 0.044 0.044 0.044 0.049 0.044 0.049 0.044 0.044 0.049 0.044 0.048 0.048 0.048 0.048 0.048 0.044 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.049 0.048 0.049 0.044 0.040 0.044<
0.792 0.772 0.082 0.063 0.102 0.004 0.004 0.080 0.727 0.588 0.6375 0.047 0.044 0.030 0.003 0.041 0.048 0.588 0.6574 0.047 0.048 0.027 0.003 0.044 0.056 0.588 0.525 0.035 0.078 0.027 0.003 0.043 0.064 0.763 0.524 0.077 0.043 0.027 0.004 0.003 0.048 0.163 0.214 0.077 0.025 0.021 0.004 0.005 0.048 0.183 0.214 0.035 0.031 0.021 0.004 0.005 0.020 0.184 0.234 0.033 0.031 0.021 0.004 0.005 0.021 0.185 0.224 0.033 0.031 0.021 0.004 0.005 0.025 0.186 0.124 0.032 0.021 0.021 0.004 0.005 0.021
0.588 0.675 0.047 0.044 0.030 0.018 0.003 0.003 0.040 0.366 0.582 0.553 0.035 0.005 0.002 0.003 0.049 0.040 0.0
0.582 0.583 0.035 0.026 0.007 0.002 0.003 0.004 0.040 0.763 0.674 0.048 0.007 0.003 0.004 0.003 0.048 0.763 0.763 0.075 0.025 0.003 0.003 0.024 0.013 0.763 0.764 0.077 0.025 0.021 0.004 0.003 0.024 0.123 0.183 0.214 0.025 0.021 0.004 0.005 0.020 0.215 0.183 0.234 0.033 0.031 0.021 0.004 0.005 0.020 0.215 0.184 0.035 0.031 0.021 0.004 0.005 0.020 0.215 0.194 0.030 0.030 0.041 0.000 0.000 0.446 0.000 0.055 0.053 0.071 0.000 0.000 0.446 0.000 0.055 0.053 0.001 0.000 0.000 0.000 0.000
0.7629 0.018 0.007 0.004 0.003 0.048 0.763 0.674 0.043 0.022 0.024 0.023 0.043 0.763 0.077 0.043 0.025 0.025 0.004 0.010 0.123 0.168 0.214 0.026 0.024 0.025 0.021 0.004 0.005 0.035 0.845 0.183 0.234 0.033 0.031 0.021 0.021 0.004 0.005 0.035 0.031 0.031 0.031 0.021 0.004 0.005 0.035 0.031 0.031 0.021 0.004 0.005 0.035 0.031 0.001 0.005 0.005 0.005 0.005 0.005 0.000 0.044 0.000 0.000 0.000 0.049 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0,763 0,674 0,043 0,032 0,004 0,023 0,023 0,023 0,023 0,024 0,223 0,168 0,214 0,026 0,024 0,025 0,021 0,004 0,005 0,000 0,013 0,183 0,234 0,033 0,031 0,021 0,021 0,004 0,005 0,005 0,015 0,184 0,234 0,033 0,031 0,021 0,024 0,005 0,004 0,005 0,005 0,015 0,194 0,039 0,030 0,001 0,001 0,000 0,446 0,000 0,194 0,039 0,007 0,011 0,008 0,000 0,446 0,000 0,194 0,039 0,013 0,004 0,000 0,446 0,000 0,194 0,013 0,004 0,000 0,000 0,446 0,000 0,056 0,014 0,004 0,004 0,000 0,000 0,446 0,000 0,056
0,163 0,073 0,025 0,004 0,004 0,005 0,013 0,168 0,214 0,026 0,024 0,029 0,021 0,004 0,005 0,050 0,845 0,183 0,234 0,033 0,031 0,021 0,004 0,005 0,002 0,215 0,184 0,234 0,033 0,031 0,021 0,024 0,005 0,015 0,194 0,030 0,030 0,011 0,000 0,000 0,446 0,000 0,194 0,030 0,019 0,001 0,000 0,448 0,000 0,096 0,013 0,007 0,001 0,000 0,448 0,000 0,055 0,016 0,001 0,000 0,448 0,000 0,056 0,016 0,000 0,000 0,448 0,000 0,055 0,005 0,000 0,000 0,489 0,000 0,055 0,006 0,000 0,000 0,489 0,000 <
0.168 0.214 0.025 0.021 0.004 0.005 0.050 0.845 0.183 0.234 0.033 0.031 0.021 0.004 0.005 0.050 0.845 0.183 0.234 0.033 0.031 0.021 0.004 0.005 0.002 0.215 0.194 0.083 0.007 0.001 0.005 0.000 0.446 0.000 0.095 0.164 0.003 0.001 0.000 0.446 0.000 0.095 0.164 0.003 0.000 0.446 0.000 0.096 0.164 0.003 0.000 0.446 0.000 0.096 0.164 0.000 0.000 0.446 0.000 0.096 0.164 0.000 0.000 0.446 0.000 0.096 0.164 0.000 0.446 0.000 0.055 0.000 0.000 0.446 0.000 0.055 0.000 0.000 0.446 <
0.168 0.214 0.026 0.024 0.021 0.004 0.005 0.050 0.845 0.183 0.234 0.033 0.031 0.021 0.004 0.005 0.020 0.215 0.194 0.030 0.001 0.011 0.000 0.000 0.446 0.000 0.095 0.164 0.003 0.001 0.000 0.449 0.000 0.055 0.013 0.007 0.008 0.000 0.449 0.000 0.055 0.164 0.019 0.008 0.000 0.449 0.000 0.055 0.164 0.019 0.008 0.000 0.449 0.000 0.055 0.164 0.009 0.000 0.449 0.000 0.055 0.164 0.000 0.000 0.449 0.000 0.055 0.164 0.000 0.000 0.449 0.000 0.055 0.050 0.000 0.000 0.234 0.000 0.055 <
0.183 0.234 0.033 0.031 0.021 0.004 0.005 0.015 0.194 0.086 0.030 0.011 0.000 0.000 0.446 0.000 0.095 0.013 0.001 0.000 0.000 0.449 0.000 0.055 0.064 0.019 0.008 0.000 0.449 0.000 0.055 0.064 0.019 0.008 0.000 0.449 0.000 0.055 0.164 0.019 0.008 0.000 0.449 0.000 0.055 0.164 0.001 0.000 0.000 0.449 0.000 0.055 0.164 0.001 0.008 0.000 0.449 0.000 0.055 0.164 0.001 0.002 0.000 0.449 0.000 0.055 0.164 0.002 0.000 0.000 0.329 0.000 0.055 0.056 0.004 0.002 0.000 0.000 0.000 <
0.194 0.030 0.011 0.000 0.445 0.000 0.096 0.083 0.007 0.008 0.000 0.445 0.000 0.096 0.164 0.009 0.000 0.494 0.000 0.055 0.164 0.013 0.008 0.000 0.489 0.000 0.055 0.164 0.009 0.000 0.489 0.000 0.000 0.055 0.055 0.004 0.008 0.000 0.000 0.439 0.000 0.078 0.050 0.004 0.005 0.000 0.234 0.000 0.078 0.050 0.007 0.000 0.204 0.000 0.234 0.000 0.078 0.050 0.004 0.007 0.000 0.205 0.000 0.205 0.078 0.129 0.004 0.007 0.000 0.000 0.534 0.000 0.055 0.005 0.006 0.000 0.000 0.144 0.000 <
0.194 0.030 0.001 0.000 0.446 0.000 0.096 0.083 0.007 0.001 0.005 0.000 0.446 0.000 0.096 0.013 0.007 0.008 0.000 0.489 0.000 0.055 0.164 0.009 0.008 0.000 0.489 0.000 0.055 0.164 0.009 0.004 0.000 0.329 0.000 0.055 0.066 0.004 0.005 0.000 0.339 0.000 0.055 0.095 0.004 0.005 0.000 0.203 0.000 0.053 0.004 0.005 0.000 0.000 0.234 0.000 0.053 0.004 0.007 0.000 0.000 0.203 0.000 0.053 0.004 0.004 0.000 0.000 0.235 0.000 0.055 0.004 0.004 0.000 0.000 0.014 0.000 0.055 0.004 <
0.194 0.030 0.011 0.000 0.046 0.000 0.095 0.083 0.013 0.008 0.008 0.000 0.494 0.000 0.095 0.164 0.013 0.008 0.000 0.000 0.494 0.000 0.055 0.164 0.013 0.004 0.008 0.000 0.413 0.000 0.095 0.095 0.006 0.004 0.005 0.000 0.413 0.000 0.078 0.005 0.005 0.002 0.000 0.200 0.200 0.000 0.093 0.004 0.002 0.007 0.000 0.205 0.000 0.078 0.129 0.004 0.003 0.007 0.000 0.205 0.000 0.055 0.004 0.004 0.004 0.004 0.000 0.000 0.205 0.000 0.058 0.005 0.004 0.004 0.000 0.000 0.144 0.000 0.088 0.008
0.0956 0.0164 0.0013 0.007 0.008 0.000 0.494 0.000 0.056 0.164 0.013 0.008 0.008 0.000 0.489 0.000 0.055 0.164 0.019 0.004 0.008 0.004 0.000 0.413 0.000 0.095 0.095 0.005 0.004 0.005 0.005 0.000 0.334 0.000 0.078 0.005 0.005 0.005 0.005 0.005 0.000 0.234 0.000 0.078 0.129 0.004 0.005 0.007 0.000 0.205 0.000 0.078 0.129 0.004 0.007 0.007 0.000 0.259 0.000 0.055 0.005 0.004 0.004 0.004 0.004 0.000 0.144 0.000 0.088 0.088 0.005 0.000 0.000 0.279 0.000
0.096 0.164 0.013 0.008 0.000 0.489 0.000 0.055 0.164 0.009 0.004 0.008 0.000 0.329 0.000 0.095 0.095 0.006 0.004 0.005 0.000 0.132 0.000 0.078 0.095 0.005 0.005 0.000 0.000 0.534 0.000 0.093 0.090 0.004 0.007 0.007 0.000 0.205 0.000 0.078 0.129 0.004 0.007 0.007 0.000 0.259 0.000 0.078 0.129 0.004 0.004 0.004 0.000 0.259 0.000 0.078 0.129 0.004 0.004 0.000 0.000 0.414 0.000 0.088 0.098 0.002 0.000 0.279 0.000
0.055 0.009 0.004 0.008 0.000 0.329 0.000 0.095 0.009 0.004 0.005 0.000 0.000 0.413 0.000 0.095 0.095 0.006 0.006 0.005 0.000 0.000 0.334 0.000 0.078 0.097 0.007 0.007 0.000 0.205 0.000 0.078 0.129 0.004 0.003 0.004 0.004 0.000 0.000 0.078 0.129 0.004 0.003 0.004 0.004 0.000 0.000 0.055 0.005 0.000 0.000 0.000 0.000 0.000 0.058 0.005 0.001 0.000 0.000 0.014 0.000 0.088 0.002 0.000 0.000 0.279 0.000
0.055 0.009 0.004 0.005 0.000 0.413 0.000 0.095 0.095 0.006 0.006 0.005 0.005 0.000 0.534 0.000 0.078 0.078 0.005 0.000 0.000 0.205 0.000 0.078 0.039 0.004 0.007 0.000 0.000 0.259 0.000 0.078 0.078 0.004 0.004 0.004 0.000 0.000 0.144 0.000 0.085 0.002 0.000 0.000 0.000 0.144 0.000 0.088 0.002 0.000 0.000 0.000 0.000 0.000 0.000
0.095 0.095 0.006 0.004 0.006 0.005 0.005 0.005 0.005 0.000 <th< td=""></th<>
0.095 0.095 0.005 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.000 <th< td=""></th<>
0.078 0.005 0.002 0.007 0.000 0.000 0.000 0.093 0.094 0.004 0.007 0.004 0.004 0.000 0.000 0.000 0.078 0.129 0.004 0.004 0.000 0.000 0.000 0.000 0.085 0.005 0.001 0.000 0.144 0.000 0.088 0.002 0.000 0.000 0.000 0.000
0.053 0.050 0.004 0.003 0.007 0.007 0.000 0.259 0.000 0.078 0.129 0.004 0.003 0.004 0.004 0.004 0.000 0.000 0.673 0.000 0.055 0.005 0.001 0.000 0.144 0.000 0.088 0.002 0.005 0.000 0.279 0.000
0.078 0.129 0.004 0.004 0.004 0.004 0.000 0.000 0.0673 0.000 0.055 0.005 0.001 0.000 0.144 0.000 0.088 0.002 0.005 0.000 0.279 0.000
0.055 0.005 0.001 0.000 0.144 0.000 0.088 0.002 0.005 0.000 0.279 0.000
0.088 0.002 0.005 0.000 0.279 0.000
,

Generator Calculations for Steamships are not applicable*

Table B-1

Activity Data and NOx Marine Vessel Emissions Inventory for the August 3-7, 1997 Episode (Generator Calculations Only)

Hotelling kW	(55% Use)	275	27.5	077	275	275	313.5	242	275	352	302.5	185	242	440	495	906.95	701.25	510.4	1650	1650	1215.5	550	418	522.5	484	220	467.5	418	495	770	1375	825	528	099	550	550	509	5777	440	748	715	451	385	748	973.5	566.5	1265	1205	27 770	976.25
Manyg kW	(80% Use)	400	400	320	400	400	456	352	400	512	440	260	352	640	720	1319.2	1020	742.4	2400	2400	1/68	800	809	760	704	320	680	809	07/	1120	2000	1200	768	096	800	800	880	0001	640	1088	1040	656	260	1088	1416	824	1840	1080	1420	1420
PZC KW	(80% Use)	400	330	220	400	400	456	352	400	217	440	560	352	640	720	1319.2	1020	742.4	2400	2400	1/00	800	809	760	704	320	089	809	848	1120	2000	1200	768	096	800	008	1000	1080	640	1088	1040	656	999	1088	1416	824	1840	1080	1420	1420
Cruise kW	(80% Use)	400	320	200	00+	400	456	352	400	212	440	260	352	640	720	1319.2	1020	742.4	2400	1769	464	800	809	760	704	320	089	908	848	1120	2000	1200	768	096	800	800	1000	1080	640	1088	1040	959	995	1088	1416	824	1840	1080	1420	1420
	٤ ا	ŧ	Ŧ	†	ŧ	t	+	Ŧ	+	+	F	F	-			+	+	+	†	+	+	F	F			+	+	+	+	-	H			+	+	+	+	+	+	F	F		=	+	+	+	+	+	F	H
į	3	\dagger	+		t	\dagger	\dagger	\dagger		\dagger					1	1	+		\dagger	+			H			\dashv	+	\dagger	\dagger	\vdash	Н		1	+	+	+	1		-				+	+	+	+	+	╁	┞	H
 1	_	T		Ī	T		T	T		1						1			Ì	1						1	T	T	T	l		1000	1	1	T	\dagger	\dagger			906			1	1	\dagger	\dagger	1		r	П
è			T	T	T	T	†	\dagger	1	t			-		1	1	\dagger	†	\dagger	1	T	T	T	П		1	T	\dagger	\dagger			3	1	+	\dagger	t	t	t	\vdash	-		1	+	+	\dagger		\dagger	\dagger		Н
3	2		Ī	Ī	T	T	Ī								230	920	909		T	2140				170						1200	2100	1100		1200	T	T	T		8	1200			1		920	1500	1500			П
 À.C	3							T							7	4	7	†	T	1-	t			-			t	\dagger		-	3	-	1	_	+	1	T		-	3		1	1	+	-	- (1 7	-	\vdash	П
\$	909	200	400	500	200	570	940	200	8	550	550	700	440	800	8	1649	(77)	87,6	3000	2210	280	1000	760	950	880	8 8	3,50	8 8	1060	1400	2500	1500	980	1200	200	8 2	1250	1350	800	1360	1300	820	90.	360	1030	2300	2300	1350	1775	1775
Gene- rators	, ~		3	3	~	, [~	. ~		, ~	3	3	3	3	2		- -	- -	ŧ 4	, ,	, ~	~	3	7	3	m	m,	7 (, m	5	3	_	_	٥	,	1 4	4	m	4	3	2	3	m	<u>~</u>	4 4	1 60	, ~	2	2	4	4
Engine Type			Д	Ω	6		1 0	3 6		۵	D	D.	Δ	ρ		2 6					Ω	Д	Д	D	D ,				D	Δ		Д						Ω	D	Д	D	ام		اد				D	^	
 ļ	╀	_		_	-	\perp	╀	1	-	_	Ш			4	\downarrow	1	\downarrow	+	+	1	L	Ш			4	1	1	-	L	Ш	4	4	4	1	\perp	L	L		Ц		4	1	+	1	1	\downarrow	1			4
 	BBU	BBC	BBU	BBU	BBU	BBU	RRIT	BRU	BB	BCI	BCB	BCB	ည္တ	င္ယ	3	3 6	5 6	200	Ş	MPR	Σ	MVE	MS	MVE	₹.	MVE	T V	É	CCC	ncc	ğ	ğ				ğ	CCC	ğ	ncc	CCC	ğ	CCC	220		3 3	ncc	OOn	ncc	ncc	220
Call Sign	3FMC6	VRUT3	P3QK2	P3JS7	UHII	ELDT6	CASP	3FL.16	3FQU4	ELED7	ELED8	SePD	ЗЕНТ6	LADO4	ELIC	PECT PECT	ET MITS	REPNE	3FPM5	ELTG6	DSHID	3FEA4	ELKVS	KGTI	LAFH4	AZZE G	ZEZ	CéOB	DLAZ	3FXX4	V7AL8	OXSF2	CoLY4	51 KT19	ELKU9	3EFX5	OWNJ2	SXNO	C6BJ9	ELGH3	3F0Z3	BKJZ	3FOW2	38667	JKCF	DSE17	3FMK7	P3BA7	3FFS6	3FDY6
Ship Name	BEL ACE	FARENCO	FIVI	MODI	NOSHIRO MARU	OTRADA	PERICLES C.G.	SAGACIOUS NIKE	SINGAPORE ACE	PACPRINCE	PACPRINCESS	STAR DROTTANGER	KARINA BONITA	STAR GRUP	CHOUTA EB ANCES	MAGIC	TINDRA KING	HOLDAY	JUBILEE	VIKING SERENADE	AYAII	BELLONA	FRANCONIA	GREEN LAKE	HUAL CARMENCITA	STOLT TENACITY	BT NESTOR	SAMUEL GINN	ACAPULCO	ALLIGATOR BRAVERY	APL SINGAPORE	AXEL MAERSK	BRISBANE STAR	CALIFORNIA HIPITER	CALIFORNIA SATURN	CAPE CHARLES	CHASTINE MAERSK	CHETUMAL	DIRECT EAGLE	DOLE ECUADOR	EMPRESS DRAGON	EVER GLOWING	EVER GRADE	EVER UNION	GEORGE WASHINGTON BRIDGE	HANJIN LONDON	HANJIN PARIS	HYUNDAI DYNASTY	HYUNDAI FREEDOM	HYUNDAI INDEPENDENCE

Table B-1Activity Data and NOx Marine Vessel Emissions Inventory for the August 3-7, 1997 Episode (Generator Calculations Only)

D 3 2200 D 1 1390 D 2 1300 D 1 1200		VANY UCC OUNY UCC ELPXS UCC
1200 1000 1240 1240 1240 2200 2200	- 0 0	UCC D 1 1 1 1 1 1 1 1 1

Table B-1

Activity Data and NOx Marine Vessel Emissions Inventory for the August 3-7, 1997 Episode (Generator Calculations Only)

•	Exit PZC	0 003	0.003	0.001	0.003	0.002	0.002	0.002	0.003	0.003	0.003	0.004	0.002	0.003	0000	0.007	0.003	0.017	0.017	0.012	900'0	0.004	0.005	0.003	0.001	000	0.005	9000	0.005	0.008	0.003	0.007	0.003	0.006	0.000	0.00	0.003	0.008	0.007	0.003	0.008	9000	0.006	0.013	0.013	0.010	0.010
	Entry PZC	-	T	0.002	0.004	0.002	0.002	0.003	0.004	0.00	0.003	0.005	0.003	0.003	0.010	0.008	0.004	0.021	0.021	0.016	800.0	0.005	0.007	0.004	0.002	5000	0.007	0.007	900'0	0.011	0.004	600.0	0.004	0.007	8000	900.0	0.003	0.010	0.010	0.003	0.000	0.007	0.008	0.017	0.010	0.013	0.013
	Exit PZC B	H	2562	1196	2562	1495	1704	2255	2562	2818	2818	3587	2255	1857	8449	6533	2774	15372	15372	7972	5124	3894	4868	2630	1196	1894	4612	5431	4185	7473	2869	6149	2989	5124	50405	4035	2391	6969	1999	2451	6969	5291	5278	11785	58/11	5606	5606
se (PZC)	Entry PZC P	-	3416	1537	3416	1922	2191	3006	3416	3758	3053	4484	3006	4006	9154	7078	3566	19215	19215	3715	6832	4219	6490	3382	1537	4219	6149	6829	5380	3008	3689	8188	3843	2046	0269	5188	3074	8711	8882	3151	8711	6802	7037	15714	9223	12127	12127
Precautionary Zone Cruise (PZC)	Medium Speed engines EMSFAC EP PZC (grkWh)	L	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81
Precaution	Exit PZC eng kWh	-	200	93	200	117	133	9/1	256	220	220	280	176	360	099	510	217	1200	1200	232	400	304	380	205	340	304	360	424	327	680	224	480	233	440	2009	315	187	544	520	161	544	413	412	920	270	710	710
	JZ ZC	217	267	120	267	150	1/1	657	341	293	238	350	235	390	715	553	278	1500	1105	290	533	329	507	264	120	329	480	530	420	000	788	640	300	500	545	405	240	089	693	240	089	531	549	1227	720	947	947
	v o	0.50	0.50	0.29	0.50	0.29	67.0	0.50	0.50	0.50	0.50	0.50	0.50	05.0	0.50	0.50	0.29	0.50	05.0	0.50	0.50	0.50	0.50	0.29	0.29	0,50	0.50	0.50	0.29	0.50	0.29	0.50	0.29	0.50	0.50	0.29	0.29	0.50	0.50	67.0	0.50	0.29	0.50	0.50	0.50	0.50	0.50
		0.54	79.0	0.38	0.67	0.38	0.38	0.07	0.0	19'0	0.54	0.63	0.07	0.54	0,54	0.54	0.38	0.63	69.0	0,63	0.67	0.54	29.0	0.38	0.38	0.54	. 19.0	0.63	0.38	0.00	0.38	29'0	0.38	0.63	0.54	0.38	0.38	0,63	79.0	0.38	0.63	0.38	19'0	0.67	0.67	0.67	19.0
	se (sr		7	0.012	0.016	0.018	0.016	0.014	0.024	0.018	0.018	0.022	0.012	0.029	0.039	0.030	0.022	0.110	0.101	0.016	0.027	0.021	0.025	0.023	0.024	0.022	0.030	0.023	0.029	0.040	0.023	0.027	0.022	0.022	0.032	0.027	0.020	0.032	0.027	0.019	0.028	0.038	0.022	0.043	0.030	0.032	0.033
	Entry Cruise 1	0.015	0.016	0.013	0.017	810.0	0.010	9100	0.024	0.019	0.015	0.020	0.013	0.025	0.035	0.027	0.023	860.0	0.050	0.014	0.028	0.018	0.026	0.024	0.028	0.020	0.034	0.020	0.029	0.047	0.023	0.028	0.023	0.019	0.028	0.028	0.021	0.028	0.028	0.020	0.025	0.039	0.023	0.044	0.031	0.033	0.034
	Exit Cruise NOx (g)	16038	14495	11088	14585	14091	12471	14481	21448	16425	16143	20419	21068	25878	35284	27281	19856	99852	78739	14152	24400	18858	22862	21067	21878	20154	27511	21161	26046	27723	20567	24763	19964	21960	28915	24584	18235	28823	24494	14997	25086	34648	20180	38852	27578	29439	30239
	Entry Cruise NOx (g)	13982	14867	11372	15353	14832	13075	14852	21998	17290	14073	18270	22.177	22560	31569	24409	20901	89342	70003	12338	25026	16441	23449	21607	25044	18033	30685	18448	47.673	27921	21095	25398	20476	19145	25871	25878	19194	25789	25122	15382	22445	35536	20697	39849	28285	30194	31015
Cruise	Medium Speed engines EMSFAC Cruise (g/kWh)	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81
		1252	1132	998	1350	1100	07.6	1130	1674	1282	1260	1594	1645	2020	2754	2130	1550	26/1	8019	1105	1905	1472	1785	158	1708	1573	2148	1652	2023	2125	1606	1933	1558	1714	2257	1919	1423	2250	1330	1171	1958	2705	1575	3033	2153	2298	2361
	Entry Cruise Exit Cruise kWh kWh	1091	1161	888	1204	1158	1021	1159	1717	1350	1099	1426	1731	1761	2464	1905	1632	6410	5465	963	1954	1283	1830	1687	1955	1408	2395	1440	3320	2180	1647	1983	1598	1495	2020	2020	1498	2013	1961	1201	1752	2774	1616	3111	2208	2357	2421
	Entry Cruise Exit Cruise Time Time (hours)	3.13	2.83	2.70	2 12	2.13	2.75	2.83	3.27	2.91	2.86	2.85	2.57	2.81	2.09	2.09	2.09	2.62	3.45	2.38	2.38	2.42	2.35	2.34	2.51	2.59	2.98	1.95	787	1.77	2.09	2.01	1.95	1.95	2.26	1.78	2.22	2.07	1.84	2.09	1.80	16.1	1.91	1.65	1.99	1.62	1.66
	Entry Cruise Time (hours)	2.73	2.90	2.77	3.00	2.54	2.90	2.90	3.35	3.07	2.50	2.55	2.70	2.45	1.87	1.87	2.20	2 67	3,09	2.08	2.44	2.11	2.41	2.40	2.88	2.32	3,33	0.70	1.00	1.82	2.14	2.07	2.00	1.70	2.02	1.87	2.34	1.85	1.89	2.14	1,61		1	1.69	2.04	1.66	1.71
	Ship Name	BELACE	FARENCO	FIVI	NOSHIEO MABIT	OTRADA	PERICLES C.G.	SAGACIOUS NIKE	SINGAPORE ACE	PACPRINCE	PACPRINCESS	VABINA BONITA	STAR GRIP	VAIMAMA	CHIQUITA FRANCES	MAGIC	TONDKA KING	TIBILEE	VIKING SERENADE	АХА П	BELLONA	FRANCONIA	GREEN LAKE	OPAL CARMENCITA	STOLT TENACITY	BT NESTOR	SAMUEL GINN	ALTIGATOR PRAIGERY	API. SINGAPORE	AXEL MAERSK	BRISBANE STAR	BROOKLYN BRIDGE	CALIFORNIA SATTEN	CAPE CHARLES	CHASTINE MAERSK	CHETUMAL	DIRECT EAGLE	DOLE ECUADOR	EVER GLOWING	EVER GRADE	EVER RACER	EVER UNION	GEORGE WASHINGTON BRIDGE	HANIN PARIS	HYUNDAI DYNASTY	HYUNDAI FREEDOM	HYUNDAI INDEPENDENCE

Generator Calculations for Steamships are not applicable*

Generator Calculations for Steamships are not applicable*

Table B-1
Activity Data and NOx Marine Vessel Emissions Inventory for the August 3-7, 1997 Episode (Generator Calculations Only)

	Exit PZC	0.006	0.022	900'0	0.022	0.009	0.003	0.004	0.004	0.003	0.005	0.012	0.012	0.008	0.007	0.007	0.007	900.0	0.007	0.007	0.012	0,012														
	Entry PZC	0.008	0.024	0.008	0.029	0.011	0.004	0,005	0.005	0.004	0.006	910'0	0.017	0.008	0.010	0.007	0.009	0.008	0.008	600.0	0.013	0.013														
	Exit PZC	5636	19984	5278	19984	8198	7477	3288	3288	2989	4484	10760	11273	7122	1999	6149	6149	5124	6354	6354	11273	11273												-		
ruise (PZC	Entry PZC	7515	21649	7037	26645	10248	2042	4227	4227	3843	5765	14347	15030	7716	8882	1999	8198	6832	6883	8472	12212	12212														
Precautionary Zone Cruise (PZC)	Medium Speed engines EMSFAC PZC (ork.Wh)	12.81	12.81	12.81	12.81	12.81	12.01	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12,81	12.81	12.81	12.81	12.81														
Precaut	Exit PZC kWh	440	1560	412	1560	640	583	257	257	233	350	840	880	556	520	480	480	400	496	496	088	880														
	Entry PZC kWh	587	1690	549	2080	800	250	330	330	300	450	1120	1173	602	693	520	640	533	537	661	953	953														
	Exit PZC Time (hours)	L	0.50	0.50	0.50	0.50	67.0	0.29	0.29	0.29	0.29	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50														
`	Entry PZC Time (hours)	0.67	0.54	29'0	0.67	0.63	0.50	0.38	0.38	0.38	0.38	0.67	0.67	0.54	0.67	0.54	0.67	0.67	0.54	0.67	0.54	0.54														
	Entry Cruise Exit Cruise NOx (tone)	0.026	0.072	0.022	0.071	0.042	0.023	0.023	0.023	0.024	0.035	0.061	0.044	0.036	0.033	0.028	0.023	0.024	0.029	0.031	0.077	0,084														
	Exit Cruise Entry Cruise Exit Cruise NOv. (e) NOv. (frons.) NOv. (frons.)	0.024	0.063	0.023	0.075	0.037	0.024	0.030	0.023	0.025	0.036	0.063	0.045	0.032	0.034	0.024	0.024	0.026	0.025	0.032	0900	0.065														
	Exit Cruise NOx (0)	23950	62959	19984	64904	38039	44017	20471	20471	21946	31649	55584	40260	32654	30384	25097	20541	22208	25934	27880	95569	75996														
	Entry Cruise	22023	57258	20496	68320	34035	79417	20996	20996	23101	32460	57009	41292	29217	31164	21880	21622	23377	22609	29348	54365	59399														
Cruise	Medium Speed engines EMSFAC Cruise	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81	12.81														
	Exit Cruise	1870	5127	1560	2067	2969	1034	1598	1598	1713	2471	4339	3143	2549	2372	1959	1604	1734	2024	2176	5430	5933														
	Entry Cruise Exit Cruise	1719	4470	1600	5333	2657	16/2	1639	1639	1803	2534	4450	3223	2281	2433	1708	1688	1825	1765	2291	4744	4637														
	Entry Cruise Exit Cruise Time Time	2.12	1.64	1.89	1.62	2.32	2.04	1.72	1.82	2.14	2.06	2.58	1.79	2.29	2.28	2.04	1.67	2.17	2.04	2.19	3.00	337														
	Entry Cruise Time	1.95	1.43	1.94	1.71	2.08	2.09	9/-1	186	2.25	2.11	2.65	1.83	2.05	2,34	1.78	1.76	2.28	1.78	2.31	2 41	2 63	67.4				,									
	Gii Mama	LITTENBIRG	MAGLEBY MAERSK	MARE CASPIUM	MAREN MAERSK	MELBOURNE STAR	MING PLENTY	MOKIHANA NOT BITHY	NO I. ZIRCON	NEPTUNE JADE	NYK SEABREEZE	OOCL AMERICA	SEA-LAND CHARGER	SEA-LAND GUATEMALA	SEA-LAND PATRIOT	SOVCOMFLOT SENATOR	VLADIVOSTOK SENATOR	YURIY OSTROVSKIY	ZIM AMERICA	ZIM CANADA	OTHER ON COLOR AND	CHEVRON ORFGON	CITE ANON OFFICE		ARCO INDEPENDENCE*	ARCO PRUDHOE BAY*	ARCO SAG RIVER*	ARCO SPIRIT*	BLUE RIDGE*	FREDERICKSBURG*	MARINE CHEMIST*	EWA*	KAUAI*	SEA-LAND CHALLENGER*	MATSONIA*	

Table B-1

Activity Data and NOx Marine Vessel Emissions Inventory for the August 3-7, 1997 Episode

(Generator Calculations Only)

-		-		V	Maneuvering	gu					Hot	Hotelling	
	Entry	Exit Manyg		益	Medium Speed engines EMSFAC Manyg	Entry Manyg NOx	Exit Manye	Entry Manye NOX Exit Manye Entry Manyo	Exit Manyo		EMSFAC Hotelling for Medium Speed	OM ::	
Ship Name BFI, ACF	Manyg (hrs)	(hrs)	Manvg kWh			(g)	NOx (g)	NOx (tons)	NOx (tons)	Hotelling (hrs)	(g/kWh)	(g)	NOx (tons)
FARENCO	0.35	2.58	140	1032	12.81	1793	13220	0.002	0.003	3.51	13.57	13088	0.01
FIVI	1.67	1.50	533	480	12.81	6832	6149	0.002	0.003	110.08	13.57	384006	0.42
MODI	0.42	0.38	167	153	12.81	2135	1964	0 00	2000	10.70	75.61	338264	0.39
NOSHIRO MARU	0.92	05'0	367	200	12.81	4697	2562	0.005	0.003	89.33	13.57	333431	0.04
OTRADA	1.17	0.75	532	342	12.81	6815	4381	0.008	0.005	13.50	13.57	57447	0.00
PERICLES C.G.	1.25	0.73	440	258	12.81	5636	3307	9000	0.004	18.85	13.57	61914	0.00
SAGACIOUS NIKE	0.72	1.25	287	200	12.81	3672	6405	0.004	0.007	80.02	13.57	298657	0.33
PACEBURGE ACE	0.50	1,25	256	640	12.81	3279	8198	0.004	0.009	45.90	13.57	219288	0.24
PACPRINCE	1.25	22.	077	055	12.81	2818	7046	0.003	800.0	19.83	13.57	81429	0.09
STAR DROTTANGER	1 33	690	747	373	12.81	7046	7046	0.008	800.0	33.07	13.57	135761	0.15
KARINA BONITA	0.42	0.93	147	329	12.81	1870	47.00	0.011	0.005	38.50	13.57	201178	0.22
STAR GRIP	1.17	19.0	747	427	12.81	9565	5466	0.007	900.0	6.42	13.57	139538	0.15
VAIMAMA	0.83	0.42	009	300	12.81	7686	3843	0.008	0.004	18 58	13.57	124950	0.04
CHIQUITA FRANCES	1.58	0.50	5089	099	12.81	26757	8449	0.029	0.009	18.48	13.57	227522	0.14
MAGIC	0.88	0.90	106	918	12.81	11542	11760	0.013	0.013	19.38	13.57	184485	0.20
TONDKA KING	0.67	0.58	495	433	12.81	6340	5548	0.007	900'0	11.67	13.57	80820	0.09
ПВПЕЕ	0.00	0.50	1800	0071	12.81	23058	15372	0.025	0.017	10.75	13.57	240742	0.27
VIKING SERENADE	1.00	0.47	1768	825	12.81	0/9/7	10560	0.030	0.016	8.87	13.57	198566	0.22
АХАП	1.58	0.83	735	387	12.81	9411	4953	0.020	210.0	79.6	13.57	158650	0.17
BELLONA	0.03	0.75	27	009	12.81	342	7686	0,000	800.0	18 97	13.57	141584	0.03
FRANCONIA	1.07	0.72	649	436	12.81	8308	5582	0.009	900'0	2.08	13.57	11819	0.10
GREEN LAKE	1.25	0.83	950	. 633	12.81	12170	8113	0.013	0.009	17.50	13.57	124104	0.14
OPAL CARMENCITA	1.33	0.72	939	205	12.81	12024	6463	0.013	0.007	11.95	13.57	78501	0.09
STOLT TENACITY	0.25	0.75	170	210	12.81	7170	50/4	0.005	0.003	97.98	13.57	292573	0.32
BT NESTOR	0.78	0.38	476	233	12.01	2/17	2000	0.007	0.007	52.23	13.57	331428	0.37
SAMUEL GINN	0.75	0.75	240	540	12.81	6917	2169	0.00	0.003	27.20	13.57	154314	0.17
ACAPULCO	4.00	0.42	3392	353	12.81	43452	4526	0.048	0.005	33.50	13.57	265078	0.18
ALLIGATOR BRAVERY	1.33	0.92	1493	1027	12.81	19130	13152	0.021	0.014	41.50	13.57	433709	0.48
APL SINGAPORE	0.73	0.47	1467	933	12.81	18788	11956	0.021	0.013	75.20	13.57	1403397	1.55
BRISHANE STAR	1.00	1 17	008	240	12.81	10248	6917	0.011	0.008	19.30	13.57	216108	0.24
BROOKLYN BRIDGE	0.88	0.48	848	464	12.81	10863	5944	0.014	0.013	40.03	13.51	755578	0.08
CALIFORNIA JUPITER	1.00	1.08	800	867	12.81	10248	11102	0.011	0.012	18.23	13.57	136110	0.15
CALIFORNIA SATURN	1.75	0.83	1400	299	12.81	17934	8540	0.020	600'0	8.40	13.57	62705	0.07
CHASTINE MADES	0.90	0:77	836	675	12.81	10709	8642	0.012	0.010	2.40	13.57	19707	0.02
CHETTIMAL	0.63	0.17	630	180	12.81	10675	4270	0.012	0.005	50.07	13.57	467177	0.51
DIRECT EAGLE	19'0	0.37	427	235	12.81	5466	3006	0.009	0.003	36.50	13.57	367832	0.41
DOLE ECUADOR	1.00	0.80	1088	870	12.81	13937	11150	0.015	0.012	29.20	13.57	296445	0.20
EMPRESS DRAGON	0.73	0.25	763	260	12.81	9770	3331	0.011	0.004	47.77	13.57	463544	0,51
EVER GLOWING	1.00	0.48	656	317	12.81	8403	4062	600.0	0.004	5.65	13.57	34585	0.04
EVER BACER	0.92	1.00	513	233	12.81	6576	2989	0.007	0.003	28.67	13,57	149795	0.16
EVER UNION	60.0	0.50	1634	708	12.81	1001	13937	0.013	0.015	17.98	13.57	182571	0.20
GEORGE WASHINGTON BRIDGE	0.78	0.45	645	371	12.81	8268	4750	0.000	0.010	69.00	13.57	581364	0.64
. HANJIN LONDON	1.12	0.83	2055	1533	12.81	26320	19642	0.029	0.022	0.28	13.57	4865	86.0
HANJIN PARIS	0.92	0.92	1687	1687	12.81	21606	21606	0.024	0.024	13.00	13.57	223200	0.25
HYUNDAI DYNASIY	0.95	0.95	1026	1026	12.81	13143	13143	0.014	0.014	43,52	13.57	438543	0.48
HYUNDAI INDEPENDENCE	0.87	2 33	1231	1349	12.81	30317	17281	0.033	610.0	2.82	13.57	37321	0.04
			1,521	21.00	16.21	13/03	+++7+	10.0	0.047	13.00	13.57	172252	0.19

B-18

Generator Calculations for Steamships are not applicable*

Table B-1Activity Data and NOx Marine Vessel Emissions Inventory for the August 3-7, 1997 Episode

(Generator Calculations Only)

									- Indicate of the last of the				
				4.	Maneuvering	Bu					Hote	Hotelling	
	-		1			Entry					EMSFAC Hotelling for Medium Speed		
Ship Name	Entry Manvg (hrs)	Exit Manvg (hrs)	Entry Manvg kWh	Exit Manvg kWh	Manvg (g/kWh)	Manvg NOx (g)	Exit Manvg NOx (g)	Manyg NOx Exit Manyg Entry Manyg (g) NOx (g) NOx (tons)	Exit Manvg NOx (tons)	Hotelling (hrs)	engines (g/kWh)	Hotelling NOx (g)	Hotelling NOx (tons)
LUTJENBURG	19'0	0.25	587	220	12.81	7515	2818	0.008	0.003	6.50	13.57	53374	90.0
MAGLEBY MAERSK	0.58	0.33	1820	1040	12.81	23314	13322	0.026	0.015	21.67	13.57	630782	69'0
MARE CASPIUM	0.75	0.73	618	604	12.81	7917	7741	0.009	0.009	37.43	13.57	287818	0.32
MAREN MAERSK	0.73	0.38	2288	1196	12.81	29309	15321	0.032	0.017	13.30	13.57	387203	0.43
MELBOURNE STAR	0.85	0.83	1088	1067	12.81	13937	13664	0.015	0.015	42.08	13.57	502635	0.55
MING PLENTY	1.08	1.00	867	800	12.81	11102	10248	0.012	0.011	63.58	13.57	474642	0.52
MOKIHANA	0.75	0.72	1500	1433	12.81	19215	18361	0.021	0.020	38.62	13.57	720671	0.79
NOLRUBY	0.92	06'0	807	792	12.81	10333	10146	0.011	0.011	41.10	13.57	337487	0.37
NOLZIRCON	96'0	0.95	836	928	12.81	10709	10709	0.012	0.012	74.72	13.57	613526	0.68
NEPTUNE JADE	1.08	0.62	867	493	12.81	11102	6320	0.012	0.007	10.80	13.57	80621	0.09
NYK SEABREEZE	1.10	0.92	1320	1100	12.81	16909	14091	0.019	0.016	19.25	13.57	215548	0.24
OOCL AMERICA	0.67	0.70	1120	1176	12.81	14347	15065	0.016	0.017	76.80	13.57	1203935	1.33
' SEA-LAND CHARGER	0.62	0.42	1085	-733	12.81	13903	9394	0.015	0.010	26.00	13.57	426991	0.47
SEA-LAND GUATEMALA	0.55	0.38	612	426	12.81	7835	5460	0.009	900'0	15.32	13.57	158928	0.18
SEA-LAND PATRIOT	0.85	2.25	884	2340	12.81	11324	29975	0.012	0.033	55.82	13.57	541664	09'0
SOVCOMFLOT SENATOR	0.67	0.42	640	400	12.81	8198	5124	600'0	900'0	28.92	13.57	259031	0.29
VLADIVOSTOK SENATOR	09:0	0.50	576	480	12.81	7379	6149	0.008	0.007	33.65	13.57	301432	0.33
YURIY OSTROVSKIY	0.67	0.47	533	373	12.81	6832	4782	800'0	0.005	1.53	13.57	11446	0.01
ZIM AMERICA	0.82	0.72	810	711	12.81	10378	9107	0.011	0.010	17.37	13.57	160754	0.18
ZIM CANADA	0.57	0.55	295	546	12.81	7201	6869	0.008	0.008	7.17	13.57	66338	0.07
CHEVRON COLORADO	1.03	0.75	1819	1320	12.81	23297	16909	0.026	0.019	35.30	13.57	579722	0.64
· CHEVRON OREGON	0.75	0.75	1320	1320	12.81	60691	16909	0.019	0.019	0.17	13.57	2737	0.00
ARCO INDEPENDENCE*													
ARCO PRUDHOE BAY*													
ARCO SAG RIVER*													
ARCO SPIRIT*													
BLUE RIDGE*													
FREDERICKSBURG*													
MARINE CHEMIST*													
EWA*													
KAUAI*													
SEA-LAND CHALLENGER*													
MATSONIA*													
	_						_						_

Table B-2U.S. Navy Vessel Inventory

		PM Kg/Hr			212	235	50.4	2.07	1.96	1.97					2.42	3.65		3.12	3.16	1.47	3.36	2.09	4.33	2.94				288	303	280	3.07		2.85	2.86	200
		CO Kg/Hr			34			49								37		0.83	0.84		Γ	Π	Π					, S	7	7	T-		9.15	168.45	7
		g/Hr K		liceione	5.55	1	issions	5.97 7	6.99	6.92	issions		-	issions	Ì	0.73 0	issions	0.62	0.63		0.67			0.59	issions	1	iceione	11 95 166 21	10.45	_		issions	12.19	12.13	
		SOx HC Kg/Hr Kg/Hr	+	(No En	17 45 5		(No En	16.35 5.	13.97 6.	14.12 6.	(No En			No En		17.30 0.	(No Err	14.76 0.	14.97 0.	1	15.90 0.	$\overline{}$	20.51 0.		(No Err		(No En	12 11		-	_	(No En	26.60 12	26.72 13	-
		NOx Kg/Hr K	+	Cold Iron (No Emissions)	29 53 17			28.52 16	26.43 13	26.56 14	Cold Iron (No Emissions)		1	<u>-</u>	- 1	5.75 17	Cold Iron (No Emissions)	4.91	4.98	l -	5.28 11		6.82 20	4.63	Cold Iron (No Emissions)		Cold Iron (No Emissions)	24 89 127 12	27 83 30	25.22		1 0	24.45 26	24.55 26	
		End Date		8/4/97 C	_		8/5/97 C	-	8/6/97 26	8/6/97	S/8/97						8/6/97 C	8/6/97 4.	8/6/97 4.	8/6/97 2.	8/7/97 5.	8/7/97 3.	8/7/97 6.	8/7/97 4.	8/8/97 C	-	8/5/97	_	8/5/97			8/5/97 C		8/6/97	
		Start E Date D	$\frac{1}{1}$	8/3/97	Т			1	8/5/97 8		8/6/97								8/6/97 8		8/6/97 8	8/7/97 8			8/2/98 8/	1	8/3/97	T	Т		1			8/6/97	
	Time	rati	-		1	T	l	1			14.93 8/6	1										16.00 8/7					45 40 8/			1	Г			12.00 8/6	
	h Mean	Time Tim 2 Du Min on (Hr	+	1 6.85	T	Π	Π		8.00			+	1								8.00				8.22			T	100			Π			
	Reported in Greenwich Mean Time	Time T 2 2 Hrs M		13 51				23 59			7	-			T	22 59			17 0	19 0					9	-	14 24	Τ	16 0	Π		23 48		15 0	
	ed in G	Time 7		0	L	Π		54		ò	4		T	0 6	T	0								0					Ī	Τ	0	Γ		0	
	Report	Time 1 Hrs		7	13	16	19	21	23	8	16		,	7	0	19	22	15	16	17	19	3	19	20	22		7	14	15	16	19	21	23	3	
		Port Visited (at pierside)		San Diego)		Seal Beach				San Diego			San Diego			San Diego								San Diego		San Diego				Leaving Zone	Out of Zone	Returning to Zone		
				32.72		33.72			33.13		32.72		T	T	34.02	T		32.58	32.58	32.67	32.83	32.80	32.58		32.72		32.72	Τ	32.65	32.61			32.62	32.46	
		Longitude Latitude 2					118.10		7.63	7	117.17		7.4.7		14.711		-	٠				117.58		117.17			117.17	Τ		Γ			118.67	118.56	
				Π				33.72					T	1	1	-					- 1		32.80				Π				32.61			32.62	
		Average Longitude Latitude Ship 1 1 Speed (Knots)							-	117.63			147 47			İ			1				- [117.17		117.17		117.31	117.22			118.67		
		Average Ship Speed (Knots)			15.83		П	,	-	6.57			000	T	T	4.1.6		10.00		3.90			_	9.46			0.00	4.63	Γ	5.35		15.83	1.45	3.56	
		Ship Type	Frigate				·					Arrylliany	, manual y													Destrover	-								
		Ship Class	FFG 7	- -	2	3	4	5	9		æ	35 GS	-	-	10	2	+ [2	9	7	®	6	10	11	12	DD 963		2	3	4	5	9	2	8	L